
Embedded	Real-Time	Systems

18-349: Introduction to Embedded Real-
Time Systems
Lecture 3: ARM ASM
Anthony Rowe
Electrical and Computer Engineering
Carnegie Mellon University

Embedded	Real-Time	Systems

Lecture Overview
§ Exceptions Overview (Review)

§ Pipelining

§ ARM ASM Introduction
§ Move operations
§ Arithmetic operations
§ Logical operations
§ Comparison operations
§ Multiply operations
§ Conditionals

2

Embedded	Real-Time	Systems

Reminder: ARM Register Set

Embedded	Real-Time	Systems

Control Flow
§ Processors do only one thing:

§ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

§ This sequence is the CPU’s control flow (or flow of control)

4

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

Physical	control	flow

Time

Embedded	Real-Time	Systems

Exceptions
§ An exception is a transfer of control to supervisory mode in

response to some event (i.e., change in processor state)

§ Examples:
§ div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

5

User	Process OS

exception
exception	processing
by	exception	handler

• return	to	I_current
• return	to	I_next
•abort

event	 I_current
I_next

Embedded	Real-Time	Systems

The Vector Table
§ Reserved area of 32 bytes at the

end of the memory map
§ Placed at address 0x0

§ One word of space for each
exception type

§ Contains a Branch or Load pc
instruction for the exception
handler

§ Notice that the FIQ exception-
handler is at the end of the vector
table – why?

6

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Embedded	Real-Time	Systems

The Vector Table

7

0
1
2 ...

n-1

¢ Each type of event has a
unique	exception	number	k

¢ k = index into exception
table
(a.k.a.	interrupt	vector)

¢ Handler k is called each
time
exception	k	occurs

Exception
Table

code	for		
exception	handler	0

code	for	
exception	handler	1

code	for
exception	handler	2

code	for	
Fastest		exception	handler	n-1

...

Exception	
numbers

Embedded	Real-Time	Systems

Exception Handling
§ When an exception occurs, the ARM:

§ Copies cpsr into spsr_<mode>
§ Sets appropriate cpsr bits

§ Change to ARM state
§ Change to exception mode
§ Disable interrupts (if appropriate)

§ Stores the return address in lr_<mode>
§ Sets pc to vector address

§ To return, exception handler (the code you
write) needs to:
§ Restore cpsr from spsr_<mode>
§ Restore pc from lr_<mode>
§ Handle the general-purpose (gp) registers

appropriately

8

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Embedded	Real-Time	Systems

Example: User to Supervisor
§ Your program is initially in User mode
§ When the processor executes the SWI instruction, the ARM processor

does the following for you automatically:
§ Copies cpsr into spsr_svc
§ Sets appropriate cpsr mode bits to 10011 (svc mode)

§ Disables IRQs
§ Stores return address (pc – 4) in lr_svc
§ Sets pc to vector address 0x08

§ To return, exception handler (the code you have to write) needs to:
§ Restore cpsr from spsr_svc (cpsr now has mode bits 10000 = usr mode)
§ Restore pc from lr_svc

§ In Supervisor mode, a single instruction can be used to cause the SPSR for
the current mode to be copied into CPSR while copying lr into pc
§ MOVS pc, lr

9

Embedded	Real-Time	Systems

Peak at an Exception Handler

10

; ARM processor has already done its part

S_Handler
STMFD sp!, {r0r12, lr} ; store user's gp registers and lr_svc

MOV r1, sp ; ignore for now

LDR r0, [lr, #4] ; ignore for now

BIC r0,r0,#0xff000000 ; ignore for now

BL C_SWI_handler ; ignore for now

LDMFD sp!, {r0r12, lr} ; unstack user's registers and lr_svc

MOVS pc, lr ; return from handler

Embedded	Real-Time	Systems

Instruction Cycle
§ Two Steps:

§ Fetch
§ Execute

11

Embedded	Real-Time	Systems

The Fetch Cycle
§ Program Counter (PC)

§ Holds address of next instruction that the processor should fetch
§ So, what happens?

§ Processor fetches instruction from the memory location that the
PC points to

§ Processor then increments PC
§ Unless specified otherwise
§ Sometimes, an offset added depending on processor

architecture
§ Instruction loaded into Instruction Register (IR)

§ Processor interprets instruction and performs required actions

12

Embedded	Real-Time	Systems

The Execute Cycle
§ Processor-memory interactions

§ Data transferred between CPU and main memory

§ Processor-I/O interactions
§ Data transferred between CPU and I/O device

§ Data processing
§ Some arithmetic or logical operation performed on data

§ Control action
§ Alteration of sequence of operations

§ Example: Branch to subroutine

§ Combination of the above

13

Embedded	Real-Time	Systems

Pipelining
§ Technique where multiple instructions are overlapped in execution
§ Each stage completes a part of the execution in parallel
§ Pipelining does not decrease/increase the amount of time taken for

any single instruction to execute
§ Pipelining increases throughput, i.e., number of instructions exiting

the pipeline in unit time

14

Source: http://cse.stanford.edu/class/sophomore-college/projects-00/risc/pipelining/

Embedded	Real-Time	Systems

Pipelining Stages
§ Processors can vary in the number of pipeline stages

§ Often some combination or extension of the following steps
§ Fetch instructions from memory
§ Decode the instruction
§ Execute the instruction or calculate an address
§ Access an operand in data memory
§ Write the result into a register

15

Embedded	Real-Time	Systems

Issues in Pipelining
§ Length of the pipeline depends on the length of the longest step

§ Pipeline rate limited by slowest pipeline stage
§ Because RISC instructions are simpler than CISC, they lend

themselves better to pipelining
§ RISC instructions are often the same length and can be fetched in one

operation (ideally in 1 clock cycle)
§ OK, nothing is ever that simple or ideal

§ Data dependencies: Instruction depends on the output value of a
previous instruction; value might not yet be ready because that previous
instruction is also somewhere (although ahead of the current one) in the
pipeline

§ Branch instructions: Next instruction to be executed is decided based on
the result of executing another instruction; branch can be conditional on
an instruction that has not even made it through the pipeline as yet

§ Pipeline is stalled; empty instructions (bubbles) inserted into the pipeline

16

Embedded	Real-Time	Systems

Traditional ARM Pipeline
§ ARM traditionally employed a 3-stage pipeline with the following

stages
§ Fetch: instruction fetched from memory
§ Decode: instruction is decoded
§ Execute: instruction is executed

§ When processor is executing simple data processing instructions the
pipeline enables one instruction to be completed every clock cycle

17

fetch decode execute

time

3

2

1

fetch decode execute

fetch decode execute

Embedded	Real-Time	Systems

Pipeline Changes for ARM9TDMI

18

Embedded	Real-Time	Systems

Pipeline changes for ARM10/11

19

Embedded	Real-Time	Systems

The ARM Assembly Language

§ ARM instructions can be broadly classified as
§ Data Processing Instructions: manipulate data within the registers
§ Branch Instructions: changes the flow of instructions or call a

subroutine
§ Load-Store Instructions: transfer data between registers and memory
§ Software Interrupt Instruction: causes a software interrupt
§ Program Status Instructions: read/write the processor status registers

§ All instructions can access r0-r14 directly
§ Most instructions also allow use of the pc
§ Specific instructions to allow access to cpsr and spsr

20

Embedded	Real-Time	Systems

ARM Instruction Set Format

21

Embedded	Real-Time	Systems

Data Processing Instructions
§ Manipulate data within registers

§ Move operations
§ Arithmetic operations
§ Logical operations
§ Comparison operations
§ Multiply operations

§ Appending the S suffix for an instruction, e.g, ADDS
§ Signifies that the instruction’s execution will update the flags in the cpsr

22

Embedded	Real-Time	Systems

Typical Data Processing Instruction

§ Operation – Specifies the instruction to be performed
§ Cond – specify the optional conditional flags which have to be set under

which to execute the instruction
§ Almost all ARM instructions can be conditionally executed

§ S bit – Signifies that the instruction updates the conditional flags
§ Rd – Specifies the destination register
§ Rn – Specifies the first source operand register
§ ShifterOperand2 – Specifies the second source operand

§ Could be a register, immediate value, or a shifted register/immediate
value

§ Some data processing instructions may not specify the destination register
or the source register

23

<Operation>								 <Cond>						{S}								Rd							Rn							ShifterOperand2							

Embedded	Real-Time	Systems

Data Processing Instructions
§ Consist of :

§ Arithmetic: ADD ADC SUB SBC RSB RSC
§ Logical: AND ORR EOR BIC
§ Comparisons: CMP CMN TST TEQ
§ Data movement: MOV MVN

§ These instructions only work on registers, NOT memory

24

Embedded	Real-Time	Systems

Move Instruction

25

§ MOV moves a 32-bit value into a register
§ MVN moves the NOT of the 32-bit value into a register

PRE
r5 = 5

r7 = 8

MOV r7, r5

POST
r5 = 5

r7 = 5

Embedded	Real-Time	Systems

The ARM Barrel Shifter
§ Data processing instructions are

processed within the ALU

§ ARM can shift the 32-bit binary pattern in
one of the source registers left or right by
a specific number of positions before the
value enters the ALU

§ Can achieve fast multiplies or division by
a power of 2

§ Data-processing instructions that do not
use the barrel shifter
§ MUL (multiply)
§ CLZ (count leading zeros)
§ QADD (signed saturated 32-bit add)

26

Rn Rm

Rd

Result N

Pr
e-

pr
oc

es
si

ng

N
o

pr
e-

pr
oc

es
si

ng

Arithmetic	and	Logic
Unit	(ALU)

Embedded	Real-Time	Systems

Using the Barrel Shifter
§ LSL shifts bits to the left, and is similar to the C-language operator <<

PRE
r5 = 5

r7 = 8

MOV r7, r5, LSL #2

POST
r5 = 5
r7 = 20

27

r7 = r5 * 4 = (r5 << 2)

Embedded	Real-Time	Systems

Updating the Condition Flags
§ The S suffix indicates that the cpsr should be updated

PRE cpsr = nzcvqiFt_USER

r0 = 0x00000000

r1 = 0x80000004

MOVS r0, r1, LSL #1

POST cpsr = nzCvqiFt_USER

r0 = 0x00000008
r1 = 0x80000004

28

Hint:	32-bit	version	of	0x80000004	is
1000	0000	0000	0000	0000	0000	0000	0100

Embedded	Real-Time	Systems

Arithmetic Operations
§ Operations are:

§ ADD operand1 + operand2 ; Add
§ ADC operand1 + operand2 + carry ; Add with carry
§ SUB operand1 - operand2 ; Subtract
§ SBC operand1 - operand2 + carry -1 ; Subtract with carry
§ RSB operand2 - operand1 ; Reverse subtract
§ RSC operand2 - operand1 + carry - 1 ; Revers sub with carry

§ Syntax:
§ <Operation>{<cond>}{S} Rd, Rn, Operand2

§ Examples
§ ADD r0, r1, r2
§ SUBGT r3, r3, #1
§ RSBLES r4, r5, #5

29

Embedded	Real-Time	Systems

Arithmetic Instructions
§ Subtract

PRE r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000001
SUB r0, r1, r2

POST r0 = 0x00000001
r1 = 0x00000002

r2 = 0x00000001

30

§ Addition

PRE r0 = 0x00000000
r1 = 0x00000005

ADD r0, r1, r1, LSL #1

POST r0 = 0x0000000f
r1 = 0x00000005

Embedded	Real-Time	Systems

Logical Operations
§ Operations are:

§ AND operand1 AND operand2 ; and
§ EOR operand1 EOR operand2 ; xor
§ ORR operand1 OR operand2 ; or
§ ORN operand1 NOR operand2 ; or negative (nor)
§ BIC operand1 AND NOT operand2 ; bit clear

§ Syntax:
§ <Operation>{<cond>}{S} Rd, Rn, Operand2

§ Examples
§ AND r0, r1, r2
§ BICEQ r2,r3 #7
§ EORS r1,r3,r0

31

Embedded	Real-Time	Systems

Logical Instructions
§ Bitwise logical operations on two source registers
§ AND, ORR, EOR, BIC

32

Logical OR

PRE r0 = 0x00000000
r1 = 0x02040608

r2 = 0x10305070

ORR r0, r1, r2

POST r0 = 0x12345678

r1 = 0x02040608

r2 = 0x10305070

Logical bit clear (BIC)

PRE r1 = 0b1111
r2 = 0b0101

BIC r0, r1, r2

POST r0 = 0b1010
r1 = 0b0101

r2 = 0b0101

Every	binary	1	in	r2	clears	a	
corresponding	bit	location	in	r1

Embedded	Real-Time	Systems

Multiply Instructions
§ Multiple a pair of registers and optionally add

(accumulate) the value stored in another register
§ MUL Rd, Rm, Rs Rd = Rm*Rs
§ MLA Rd, Rm, Rs, Rn Rd = Rm*Rs + Rn

§ Special instructions called long multiplies accumulate
onto a pair of registers representing a 64-bit value
§ SMLAL, SMULL, UMLAL, UMUL

PRE r0 = 0x00000000 MUL r0, r1, r2 POST r0 = 0x04
r1 = 0x00000002 r1 = 0x02
r2 = 0x00000002 r2 = 0x02

33

Embedded	Real-Time	Systems

Conditional Execution
§ Most instruction sets only allow branches to be executed

conditionally

§ However ARM reuses the condition evaluation hardware to
effectively increase number of instructions
§ All instructions have a field to determine if they should be conditionally

executed
§ Non-executed instructions consume 1 cycle

§ This removes many of the needs for branches, which stall the
pipeline (at least 3 refill cycles)

34

Embedded	Real-Time	Systems

The Condition Field

35

Embedded	Real-Time	Systems

Conditional Mnemonics

36

Not	equal

Unsigned	higher	or	same

Unsigned	lower

Minus

Equal

Overflow

No	overflow

Unsigned	higher

Unsigned	lower	or	same

Positive	or	Zero

Less	than

Greater	than

Less	than	or	equal

Always

Greater	or	equal

EQ
NE
CS/HS
CC/LO

PL
VS

HI
LS
GE
LT
GT
LE
AL

MI

VC

Suffix/Mnemonic Description

Z=0

C=1

C=0

Z=1

Flags	tested

N=1

N=0

V=1

V=0

C=1	&	Z=0

C=0	or	Z=1

N=V

N!=V

Z=0	&	N=V

Z=1	or	N=!V

Embedded	Real-Time	Systems

Comparison Instructions
The only effect of comparison is to update the condition flag. So now
“S bit” needed.
§ Operations are:

§ CMP operand1 - operand2 ; Compare
§ CMN operand1 + operand2 ; Compare Negative
§ TST operand1 ANDoperand2 ; Test
§ TEQ operand1 EOR operand2 ; Test equivalence

§ Syntax:
§ <Operation>{<cond>} Rn, Operand2

§ Examples
§ CMP r0, r1
§ TSTEQ r2, #5

37

Embedded	Real-Time	Systems

Comparison Instructions
§ Compare or test a register with a 32-bit value

§ CMN, CMP, TEQ, TST;
§ Outcome: Registers under comparison are not affected; cpsr updated

§ Example: CMP x,y sets cpsr flags based on results of x-y (subtract)
§ Example: TST x,y sets cpsr flags based on results of x&y (logical AND)

§ Do not need the S suffix

PRE cpsr = nzcvqiFt_USER
r0 = 4
r9 = 4

CMP r0, r9

POST cpsr = nZcvqiFt_USER
r0 = 4
r9 = 4

38

Embedded	Real-Time	Systems

Branch Instructions
§ To change the flow of execution or to call a routine

§ Supports subroutine calls, if-then-else structures, loops

§ Change of execution forces the pc to point to a new address

§ Four different branch instructions on the ARM
§ B{<cond>} label

§ BL{<cond>} label

§ BX{<cond>} Rm
§ BLX{<cond>} label | Rm

39

Embedded	Real-Time	Systems

Value of Conditional
§ This improves code density and performance by reducing the

number of forward branch instructions

if (x != 0) CMP r3,#0
a = b+c; BEQ skip

else ADD r0,r1,r2
a = b–c; B afterskip

skip
SUB r0, r1, r2

afterskip

40

CMP r3,#0
ADDNE r0,r1,r2
SUBEQ r0,r1,r2

Embedded	Real-Time	Systems

Examples of Conditional Execution
§ Use a sequence of several conditional instructions

if (a==0) x=1;

CMP r0,#0
MOVEQ r1,#1

§ Set the flags, then use various condition codes
if (a==0) x=0;
if (a>0) x=1;

CMP r0,#0
MOVEQ r1,#0
MOVGT r1,#1

§ Use conditional compare instructions
if (a==4 || a==10) x=0;

CMP r0,#4
CMPNE r0,#10
MOVEQ r1,#0

41

Embedded	Real-Time	Systems

Single Register Data Transfer
§ ARM is based on a “load/store” architecture

§ All operands should be in registers
§ Load instructions are used to move data from memory into registers
§ Store instructions are used to move data from registers to memory
§ Flexible – allow transfer of a word or a half-word or a byte to and from memory

LDR/STR Word
LDRB/STRB Byte
LDRH/STRH Halfword
LDRSB Signed byte load
LDRSH Signed halfword load

§ Syntax:
§ LDR{<cond>}{<size>} Rd, <address>
§ STR{<cond>}{<size>} Rd, <address

42

Embedded	Real-Time	Systems

LDR and STR
§ LDR and STR instructions can load and store data on a boundary alignment

that is the same as the datatype size being loaded or stored

§ LDR can only load 32-bit words on a memory address that is a multiple of 4
bytes – 0, 4, 8, and so on

§ LDR r0, [r1]

§ Loads register r0 with the contents of the memory address pointed to by
register r1

§ STR r0, [r1]

§ Stores the contents of register r0 to the memory address pointed to by
register r1

§ Register r1 is called the base address register

43

Embedded	Real-Time	Systems

LDR/STR Example

44

§ The memory location to be accessed is held in a base register

STR r0, [r1] ; Store contents of r0 to location pointed
; to by contents of r1.

LDR r2, [r1] ; Load r2 with contents of memory location
; pointed to by contents of r1

Embedded	Real-Time	Systems

Addressing Modes (1-4)
§ ARM provides three addressing modes

§ Preindex with writeback
§ Preindex
§ Postindex

§ Preindex mode useful for accessing a single element in a data
structure

§ Postindex and preindex with writeback useful for traversing an array

45

Embedded	Real-Time	Systems

Addressing Modes (2-4)
§ Preindex

§ Same as preindex with writeback, but does not update the base register
§ Example: LDR r0, [r1, #4]

§ Preindex with writeback
§ Calculates address from a base register plus address offset
§ Updates the address in the base register with the new address
§ The updated base register value is the address used to access memory
§ Example: LDR r0, [r1, #4]!

§ Postindex
§ Only updates the base register after the address is used
§ Example: LDR r0, [r1], #4

46

Embedded	Real-Time	Systems

Addressing Modes (3-4)

47

Preindexing with	writeback

LDR r0, [r1, #4]!

POST r0 =
r1 =

PRE			 r0 = 0x00000000
r1 = 0x00009000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

Preindexing

LDR r0, [r1, #4]

POST		r0 =
r1 =

Postindexing

LDR r0, [r1], #4

POST r0 =
r1 =

0x02020202
0x00009004

0x02020202
0x00009000

0x01010101
0x00009004

Embedded	Real-Time	Systems

Addressing Modes (4-4)

48

§ Address <address> accessed by LDR/STR is specified by
§ A base register plus an offset

§ Offset takes one of the three formats
1. Immediate: offset is a number that can be added to or subtracted from the

base register
Example: LDR r0,[r1, #8]; r0 b mem[r1+8]

LDR r0,[r1, #-8]; r0 b mem[r1-8]

2. Register: offset is a general-purpose register that can be added to or
subtracted from the base register
Example: LDR r0,[r1, r2]; r0 b mem[r1+r2]

LDR r0,[r1, -r2]; r0 b mem[r1-r2]

3. Scaled Register: offset is a general-purpose register shifted by an immediate
value and then added to or subtracted from the base register

Example: LDR r0,[r1,r2, LSL #2]; r0 b mem[r1+4*r2]

Embedded	Real-Time	Systems

Summary
§ Exceptions

§ Vector Table

§ Pipelining
§ What is it?
§ Why do we do it?

§ ARM ISA Introduction

§ Next Lecture
§ Addressing Modes (reviewed) and Block Data Transfer
§ Stack
§ Memory Mapped IO

49

