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Embedded Real-Time Systems
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Last Lecture

= EXxceptions

Vector Table

» Pipelining

What is it?
Why do we do it?

= ARM ISA Introduction

Move operations
Arithmetic operations
Logical operations
Comparison operations
Multiply operations
Conditionals
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Embedded Real-Time Systems

RM ISA Quick Reference

ARM® and Thumb®-2 Instruction Set
Quick Reference Card

Key to Tables

Rm {, <opsh>} |See Table Register, optionally shifted by constant
<Operand2> See Table Flexible Operand 2. Shift and rotate are only available as part of Operand2. <reglist> A comma-separated list of registers, enclosed in braces { and }.
<fields> See Table PSR fields. <reglist-PC> |As<reglist>, must notinclude the PC.
<PSR> Either CPSR (Current Processor Status Register) or SPSR (Saved Processor Status Register) <reglist+PC> |As<reglist>,including the PC.
C*, V* Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later. +/= + or —. (+ may be omitted.)
<Rs|sh> Can be Rs or an immediate shift value. The values allowed for each shift type are the same as those || § See Table ARM architecture versions.
shown in Table Register, optionally shifted by constant. <iflags> Interrupt flags. One or more of a, i, £ (abort, interrupt, fast interrupt).
X, Y B meaning half-register [15:0], or T meaning [31:16]. <p_mode> See Table Processor Modes
<imm8m> ARM: a 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits. SPm SP for the processor mode specified by <p_mode>
Thumb: a 32-bit constant, formed by left-shifting an 8-bit value by any number of bits, or a bit <1sb> Least significant bit of bitfield.
pattern of one of the forms 0xXYXYXYXY, 0x00XY00XY or 0xXY00XY00. <width> Width of bitfield. <width> + <1sb> must be <= 32.
<prefix> See Table Prefixes for Parallel instructions {X} RsXis Rs rotated 16 bits if X present. Otherwise, RsX is Rs.
{IA|IB|DA|DB} |Increment After, Increment Before, Decrement After, or Decrement Before. {1} Updates base register after data transfer if ! present (pre-indexed).
IB and DA are not available in Thumb state. If omitted, defaults to IA. {S} Updates condition flags if S present.
<size> B, SB, H, or SH, meaning Byte, Signed Byte, Halfword, and Signed Halfword respectively. {T} User mode privilege if T present.
SB and SH are not available in STR instructions. {R} Rounds result to nearest if R present, otherwise truncates result.
Operation § |Assembler S updates | Action Notes
Add Add ADD{S} Rd, Rn, <Operand2> N Z C V |Rd:=Rn+ Operand2 N
with carry ADC{S} Rd, Rn, <Operand2> N Z C V |Rd:=Rn+Operand2 + Carry N
wide T2 |ADD Rd, Rn, #<imml2> Rd :=Rn + imm12, imm12 range 0-4095 T,P
saturating {doubled} SE|Q{D}ADD Rd, Rm, Rn Rd := SAT(Rm + Rn) doubled: Rd := SAT(Rm + SAT(Rn * 2)) Q
Address Form PC-relative address ADR Rd, <label> Rd := <label>, for <label> range from current instruction see Note L N,L
Subtract Subtract SUB{S} Rd, Rn, <Operand2> N Z C V |Rd:=Rn-Operand2 N
with carry SBC{S} R4, Rn, <Operand2> N Z C V |Rd:=Rn- Operand2 — NOT(Carry) N
wide T2 |SUB Rd, Rn, #<imml2> N Z C V |Rd:=Rn-imml2, immI2 range 0-4095 T,P
reverse subtract RSB{S} Rd, Rn, <Operand2> N Z C V |Rd:=Operand2 - Rn N
reverse subtract with carry RSC{S} R4, Rn, <Operand2> N Z C V |Rd:=Operand2 - Rn - NOT(Carry) A
saturating {doubled} 5E |Q{D}SUB R4, Rm, Rn Rd := SAT(Rm — Rn) doubled: Rd := SAT(Rm — SAT(Rn * 2)) Q
Exception return without stack SUBS PC, LR, #<imm8> PC =LR - imm8, CPSR = SPSR(current mode), imma8 range 0-255. T
Parallel Halfword-wise addition 6 |<prefix>ADD16 Rd, Rn, Rm Rd[31:16] := Rn[31:16] + Rm[31:16], Rd[15:0] := Rn[15:0] + Rm[15:0] G
arithmetic | Halfword-wise subtraction 6 |<prefix>SUB16 Rd, Rn, Rm Rd[31:16] := Rn[31:16] - Rm([31:16], Rd[15:0] := Rn[15:0] - Rm[15:0] ¢
Byte-wise addition 6 |<prefix>ADD8 Rd, Rn, Rm Rd[31:24] := Rn[31:24] + Rm[31:24], Rd[23:16] := Rn[23:16] + Rm[23:16], G
Rd[15:8] := Rn[15:8] + Rm[15:8], Rd[7:0] := Rn[7:0] + Rm[7:0]
Byte-wise subtraction 6 |<prefix>SUB8 Rd, Rn, Rm Rd[31:24] := Rn[31:24] — Rm[31:24], Rd[23:16] := Rn[23:16] - Rm[23:16], G
Rd[15:8] := Rn[15:8] — Rm[15:8], Rd[7:0] := Rn[7:0] — Rm[7:0]
Halfword-wise exchange, add, subtract | 6 |<prefix>ASX Rd, Rn, Rm Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] — Rm[31:16] G
Halfword-wise exchange, subtract, add 6 |<prefix>SAX Rd, Rn, Rm Rd[31:16] := Rn[31:16] — Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16] G
Unsigned sum of absolute differences 6 |USAD8 Rd, Rm, Rs Rd := Abs(Rm[31:24] — Rs[31:24]) + Abs(Rm[23:16] — Rs[23:16])
+ Abs(Rm[15:8] — Rs[15:8]) + Abs(Rm[7:0] — Rs[7:0])
and accumulate 6 |USADA8 Rd, Rm, Rs, Rn Rd := Rn + Abs(Rm[31:24] — Rs[31:24]) + Abs(Rm[23:16] — Rs[23:16])
+ Abs(Rm[15:8] — Rs[15:8]) + Abs(Rm[7:0] — Rs[7:0])

Electrical & Computer
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Embedded Real-Time Systems

Branch Instructions

To change the flow of execution or to call a routine

Supports subroutine calls, if-then-else structures, loops

Change of execution forces the pc to point to a new address

Different branch instructions on the ARM
= B{<cond>} label

= BL{<cond>} label

= BX{<cond>} Rm

(9' Eﬁ%ﬁaﬁgé%ﬁn | ﬁmér 5 Carnegie Mellon University



Embedded Real-Time Systems

Lecture Overview

= ARMASM Part 2

» Addressing Modes (review)
= Batch load
= Stack

» Memory Mapped Input Output (MMIO)

(D' Ef\clt&ﬁl\ﬁg%ﬁn | |\ujte(®;r 6 Carnegie Mellon University



Embedded Real-Time Systems

LDR and STR

» |LDR and STR instructions can load and store data on a boundary alignment
that is the same as the datatype size being loaded or stored

» LDR can only load 32-bit words on a memory address that is a multiple of 4
bytes — 0, 4, 8, and so on

= TDR r0O, [rl]

» Loads register rO with the contents of the memory address pointed to by
register r1

= STR r0, [rl]

= Stores the contents of register rO to the memory address pointed to by
register r1

Register r1 is called the base address register

{9’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁted 7 Carnegie Mellon University



LDR/STR Example

= The memory location to be accessed is held in a base register

Embedded Real-Time Systems

STR r0, [rl] ; Store contents of r0 to location pointed

; to by contents of rl.

ILDR r2, [rl] ; Load r2 with contents of memory location

; pointed to by contents of rl

r0
Source
Register 0x5
for STR
rl
Base
Register L.0%200 J —— ox200

ectrical & Computer
) ENGINEERING

Memory

Ox5

2 Destination
Ox5 Register
for LDR

Carnegie Mellon University



Embedded Real-Time Systems

Addressing Modes (1-4)

= ARM provides three addressing modes
= Preindex with writeback
= Preindex
= Postindex

* Preindex mode useful for accessing a single element in a data
structure

» Postindex and preindex with writeback useful for traversing an array

(9' Ef\(jt&iaﬁgé%ﬁn | ﬁteGr 9 Carnegie Mellon University



Embedded Real-Time Systems

Addressing Modes (2-4)

= Preindex

= Same as preindex with writeback, but does not update the base register
= Example: LDR r0, [rl, #4]

* Preindex with writeback
» Calculates address from a base register plus address offset
= Updates the address in the base register with the new address

» The updated base register value is the address used to access memory
= Example: LDR r0, [rl, #4]!

= Postindex

= Only updates the base register after the address is used
= Example: LDR r0, [rl], #4

(D’ PN CNEERING 10 Carnegie Mellon University
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Addressing Modes (3-4)

PRE r0O = 0x00000000
rl = 0x00009000

mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

Preindexing with writeback Preindexing Postindexing

LDR r0, [rl, #4]! LDR r0, [rl, #4] LDR r0, [rl], #4

POST r0 =0x02020202 POST rO = 0x02020202 POST rO0 = 0x01010101
rl =0x00009004 rl = 0x00009000 rl = 0x00009004



Embedded Real-Time Systems

Addressing Modes (4-4)

» Address <address> accessed by LDR/STR is specified by
= Abase register plus an offset

= Offset takes one of the three formats
1. Immediate: offset is a number that can be added to or subtracted from the
base register
Example: LDR rO, [rl, #8]; r0 & mem[rl+8]
LDR r0, [rl, #-8]; r0 & mem|[rl-8]

2. Register: offset is a general-purpose register that can be added to or
subtracted from the base register

Example: LDR rO, [rl, «r2]; r0 & mem[rl+r2]
LDR rO, [rl, -xr2]; r0 @ mem[rl-r2]

3. Scaled Register: offset is a general-purpose register shifted by an immediate
value and then added to or subtracted from the base register

Example: LDR r0, [rl,r2, LSL #2]; r0 & mem[rl+4d*r2]

{9’ PN CNEERING 12 Carnegie Mellon University
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Multiple-Register Transfer

Load-store-multiple instructions can transfer multiple registers between
memory and the processor in a single instruction
Advantages

= More efficient than single-register transfers for moving blocks of data around
memory

= More efficient for saving and restoring context and stacks

Disadvantages

=  ARM does not interrupt instructions when executing = load-store multiple
Instructions can increase interrupt latency

Compilers can limit interrupt latency by providing a switch to control the
max number of registers that can be transferred on a load-store-multiple

LDM<cond><addrMode> Rn{!}, <registerList>{"}
STM<cond><addrMode> Rn{!}, <registerList>{"}

Electrical & Computer

ENGINEERING Carnegie Mellon University
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More on Load-Store-Multiple

Transfer occurs from a base-address register Rn pointing into memory

Transferred registers can be either
= Any subset of the current bank of registers (default)

= Any subset of the user mode bank of registers when in a privileged mode
(postfix instruction witha ‘")

= Processor not in user mode or system mode
= Writeback is not possible, 1.e., ! cannot be supported at the same time

* [fpc isin the list of registers, additionally copy spsr to cpsr
Register Rn can be optionally updated following the transfer
= [fregister Rn is followed by the ! character

Registers can be individually listed or lumped together as a range
= Use a comma with “{“ and “}” parentheses to list individual registers
= Usea “-” to indicate a range of registers

= Good practice to list the registers in the order of increasing register number
(since this 1s the usual order of memory transfer)

Electrical & Computer
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Embedded Real-Time Systems

Addressing Modes for
Load-Store-Multiple

=  Suppose that N is the number of registers in the list of registers

" xxxIA (increment after)
= Start reading at address Rn; ending address is Rn + 4N - 4
" Rn! equalsRn + 4N

* xxxIB (increment before)
= Start reading at address Rn+4; ending address is Rn + 4N
" Rn! equalsRn + 4N

= xxxDA (decrement after)
» Start reading at address Rn — 4N + 4; ending address is Rn
" Rn! equalsRn - 4N

= xxxDB (decrement before)
= Start reading at address Rn — 4N; ending address isRn - 4
" Rn! equalsRn - 4N

= ARM convention: DB and DA are like loading the register list backwards
from sequentially descending memory addresses

(D' Eﬁt&ﬁl\ﬁfﬁn | |\ujte(;r Carnegie Mellon University
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Things to Remember

= Any register can be used as the base register
= Any register can be in the register list
=  Order of registers in the list does not matter

* The lowest register always uses the lowest memory address regardless of
the order in which registers are listed in the instruction

= LDM and STM instructions only transfer words

= Unlike LDR/STR instructions, they don’ t transfer bytes or half-words
= (Can specify range instead of individual registers

= Example: LDMIA r10!, {rl2, r2-r7}

= [f the base register is updated (using !) in the instruction, then it cannot be
a part of the register set
= Example: LDMIA r10!, {r0, rl, r4, r10} 1snotallowed

(0’ Ef\(jt&iaﬁgé%ﬁn | ﬁted Carnegie Mellon University
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Examples

PRE rO = 0x00080010 0x00080020 0x05 A

rl = 0x00000000

r2 = 0x00000000 0x0008001c 0x04

r3 = Ux00000000 0x00080018 | 0x03

mem32 [0x8001c] = 0x04

mem32[0x80018] = 0x03 . 0x00080014 0x02

mem32 [0x80014] = 0x02 T

mem32 [0x80010] = 0x01 (original) 0x00060010 %01
0x0008000c 0x00

LDMIA r0O!, {rl-r3} LDMIB r0O!, {rl-r3}
POSTrO0O = 0x0008001c POSTrO = 0x0008001c
rl = 0x01 rl = 0x02
r2 = 0x02 r2 = 0x03
r3 = 0x03 r3 = 0x04

rsity
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Example 1: Saving & Restoring Registers

= Here' s what we want to accomplish
= Save the contents of registers r1, r2 and r3 to memory

= Mess with the contents of registers r1, r2 and r3

= Restore the original contents of r1, r2 and r3 from memory & restore r0

PRE rO = 0x00009000

rl = 0x09
r2 = 0x08
r3 = 0x07

; store contents to memory
STMIB r0!, {rl-r3}

, mess with registers rl, r2, r3
MOV rl, #1

MOV r2, #2

MOV r3, #3

, restore original r1, r2, r3
LDMDA rO!, {rl-r3} 4

ectrical & Computer
) ENGINEERING

0x0000900c 0x07 t

0x00009008 0x08

0x00009004 0x09
(origin]afll%—» 0x00009000

ARM convention: Highest memory
location maps to highest numbered

register

AL 11\/6 AU 1V 1\/11\)11 UniverSity
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Example 1: Block Copying

= Here' s what we want to accomplish

= Copy blocks of 32 bytes from a source address to a destination address
= r9 points to the start of the source data

= r10 points to the start of the destination data
= r11 points to the end of the source data

loop

; load 32 bytes from source address and update r 9 pointer
LDMIA r9!, {r0O-r’/}

; store 32 bytes to destination address and update r10 pointer
STMIA r10!, {rO-r7}

; check if we are done with the entire block copy
CMP r9, rilil

; continue until done
BNE loop

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University
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Stack Operations

=  ARM uses load-store-multiple instructions to accomplish stack operations
= Pop (removing data from a stack) uses load-multiple

= Push (placing data on a stack) uses store-multiple

= Stacks are ascending or descending

=  Ascending (A): Grow towards higher memory addresses

= Descending (D): Grow towards lower memory addresses
= Stacks can be full or empty

= Full (F): Stack pointer sp points to the last used or full location

= Empty (E): Stack pointer sp points to the first unused or empty location
* Four possible variants

= Full ascending (FA) — LDMFA & STMFA

= Full descending (FD) — LDMFD & STMFED

= Empty ascending (EA) — LDMEA & STMEA

= Empty descending (ED) — LDMED & STMED

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University
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Stacks on the ARM

=  ARM has an ARM-Thumb Procedure Call Standard
(ATPCS)

= Specifies how routines are called and how registers are
allocated

= Stacks according to ATPCS
= Full descending

=  What does this mean for you? / = ==
= Use STMFD to store registers on stack at procedure entry

= Use LDMFED to restore registers from stack at procedure
exit

=  What do these handy aliases actually represent?
= STMFD = STMDB (store-multiple-decrement-before)
= LDMFD = LDMIA (load-multiple-increment-after)

(9' Ef\lct&iaﬁgé%hn NG Carnegie Mellon University



Example

PRE r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080014

STMFED sp!, {rl, r4d}

Sp
(final)

ectrical & Computer
) ENGINEERING
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0x00080018 0x05 |4
sp ——| 0x00080014 0x04
(original) 0x00080010 | Empty
0x0008000c Empty
0x00080018 0x05 | 4
0x00080014 0x04
0x00080010 0x03
0x0008000c 0x02

Carnegie Mellon University
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SW Stack Checking

Three stack attributes to be preserved (/swst assembler option)
Stack base

= Starting address of the stack in memory

= [f sp goes past the stack base, stack underflow error occurs

Stack pointer (sp)

= [nitially points to the stack base

= As data 1s inserted when a program executes, sp descends memory and points
to top of the stack

Stack limit (s1)
= [f sp passes the stack limit, a stack overflow error occurs
= ATPCS: r10 i1s defined as s1

» [f spislessthan r10 after items are pushed on the stack, stack overflow
occurs

(9’ PN CNEERING Carnegie Mellon University
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Call Chain

User Mode

®

BL func—,

(* STMFD r13!, {ri14}
BL mystery——

L
LDMFD ri13!, £r14}
MOV pc, rl

(* SUB ri, r0 #'A'

CMP  rl, #'Z'-'A’ @ | cpsr_|
ADDLS r0 ro, #'a'-'A'
MOV pc, ri4 7

(=

R13 — Stack Pointer (SP)
R14 — Link Register (LR)
R15 — Program Counter (PC)

(D’ PN CNEERING 2 Carnegie Mellon University
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Instruction Support for Functions

main()

{
sum(a,b); // a,b:r4,r5

)

int sum(int x, int y)

{

return X +y;

}

address
1000 mov r0, r4 @ x
1004 mov r1,r5 @y
1008 bl  sum @ Ir
1012 ...

2000 sum: ADD rO, rO, r1
2004 BX Ir @ MOV pc, Ir i.e., return

a
b
1012 branch to sum

< 0 Xr

(0? Eﬁﬁéﬁa&m Naéld ess 0% Carnegie Mellon University
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Register Saving Conventions

» When procedure yoo calls who:
= yoo is the caller
* who is the callee

» (Can Register be used for temporary storage?

= Conventions (ATPCS is part of ABI)
= Application Binary Interface (ABI)

= “Caller Save”
= Caller saves temporary values in its frame before the call
= RO-R3

= “Callee Save”
= Callee saves temporary values in its frame before using
» R4-R11 (sometimes R12)

{9’ Eﬁt&ﬁ'\%fﬁ“ NG Carnegie Mellon University
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Register Usage

Arguments into function
Result(s) from function
otherwise corruptible
(Additional parameters
passed on stack)

Register variables
Must be preserved

Scratch register
(corruptible)

Stack Pointer
Link Register
Program Counter

{3 ENGNEERINE

Register

r0

rl

r2

r3

- Stack base
- Stack limit if software stack checking selected

rl3/sp | - SP should always be 8-byte (2 word) aligned

rld/1xr | - R14 can be used as a temporary once value stacked

rl5/pc

Carnegie Mellon University
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Course Hardware

Raspberry Pi 2

BCM2836 SoC

Broadcom 900 MHz quad-core ARMCortex-A7
Cores: 4

L1 cache: 32 KB instruction, 32 KB data *

L2 cache: 512 KB *

RAM: 1 GB RAM (off chip)

SDHC slot for Flash

Broadcom VideoCore IV

Released Feb 2015

AND lots of 1/0 devices...

* Estimate based on sleuthing...

(9’ PN CNEERING 28 Carnegie Mellon University
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Rpi Boot Process

= 3 bootloaders
» First stage (on-chip ROM):
= ARM in RESET mode

» Has code to load FAT32 file system on SD card and loads
bootcode.bin into memory to be used by GPU

» Second stage (bootcode.bin):

= Enables on-chip RAM
» Loads start.elf from SD card into memory for GPU

» Third stage (start.elf):

= Contains GPU firmware and splits up the 1 GB of RAM between GPU
and ARM CPUs (more about this in lab1)

= Then looks on SD card for kernel.img and loads it to 0x8000 and
sets *one* ARM CPU pc=0x8000

» kernel.img -> Enables JTAG hardware

(O’ PN CNEERING 26 Carnegie Mellon University
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Interfacing Peripheral
Devices to the Processor

= So far we have looked at the ARM instruction set, programmer s model
= Up next: How do we interface peripheral devices to the processor?
=  We will look at

= How do we set up (configure) peripheral devices?

= How do we check the status of the devices?

= How do we communicate with peripheral devices?

(D' Ef\clt&ﬁl\ﬁg%ﬁn | |\ujte(®;r Carnegie Mellon University
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Software Addressing of I/O Devices

= Two ways of addressing I/0O devices from the CPU
= Memorymapped I/O
= Devices are mapped in memory address space, e.g., the 7-segment LED
= Standard load and store instruction can manipulate devices
= Port-mapped I/0
= Devices are not kept in memory address space
= Special processor instructions request data from devices
= Example
IN REG, PORT

OUT REG, PORT
=  Which one is better?

= Memorymapped I/O uses the same load/store paradigm, but costs some of the
address space

= Full address space is available for port-mapped I/O, but requires extra
instructions and control signals from the CPU

(9’ Eﬁt&iﬁgﬁ%ﬁ ﬁteGr Carnegie Mellon University
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Example

= Device manufacturer will typically specify the registers that will be used to
set up and control the device

» The hardware designers will specify the address of these devices on your
system

=  You will write code to set up the devices, use the devices

(9' Ef\it&iaﬁgé%én | ﬁmé Carnegie Mellon University
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Example

=  Example: Suppose your hardware board has a 7-segment LED display

= Assume that the device manufacturer specifies that there is a register that can be
written to display a character on the LED

= The device manufacturer will also provide a table that determines the contents
of the register for each character to be displayed)

= The hardware designer will specify the address where this register is mapped
(assume that you are given that the device is mapped at 0x20200000
= If you wanted to display a character “P” on the LED, the code you will
write will look like
LDR R0O,=0x20200000
MOV R1, #0x0C
STRB R1, [RO]

// LED character map

#define LEDcharP 0x0c
#define LEDcharH 0x09
#define LEDcharA 0x08

ectrical & Computer
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Writing Code to Access the Devices

= Portability issues — hard-coding the address may pose problems in moving
to a new board where the address of the register is different

LDR RO,=0x20200000
MOV R1,#0x0C
STRB R1, [RO]

» Should use EQU assembler directive: Equates a symbolic name (e.g.,
BASE) to a numeric value

BASE EQU 0x20200000
LDR RO, =BASE
= (an also access devices using C programs
= C pointers can be used to write to a specific memory location
unsigned char *ptr;
ptr = (unsigned char *) 0x20200000;
*ptr = (unsigned char) 0x0C;

(D' Eﬁt&ﬁl\ﬁfﬁn | |\ujte(;r Carnegie Mellon University
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I/O Register Basics

= [/O Registers are NOT like normal memory
= Device events can change their values (e.g., status registers)

= Reading a register can change its value (e.g., error condition reset)

= For example, can't expect to get same value if read twice

Some are readonly (e.g., receive registers)

Some are writeonly (e.g., transmit registers)

Sometimes multiple I/O registers are mapped to same address

= Selection of one based on other info (e.g., read vs. write or extra control

bits)

= Cache must be disabled for memorymapped addresses — why?

=  When polling I/O registers, should tell compiler that value can change on
its own and therefore should not be stored in a register

" volatile int *ptr; (orint volatile *ptr;)

(9’ Eﬁt&ﬁaﬁ‘gﬁ%ﬁ“ NG Carnegie Mellon University
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Making the case for volatile

= Have you experienced any of the following in your C/C++ embedded
code?

= (Code that works fine-until you turn optimization on

= (Code that works fine-as long as interrupts are disabled

= Flaky hardware drivers

= Tasks that work fine in isolation-yet crash when another task is enabled

= volatile is a qualifier that is applied to a variable when it is declared

= [t tells the compiler that the value of the variable may change at any time---
most importantly, even with no action being taken by the code that the
compiler finds nearby
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Embedded Real-Time Systems

Syntax of volatile

volatile variable
volatile int foo;
int volatile foo;
= pointer to a volatile variable
volatile int *foo;
int volatile *foo;
= volatile pointer to a non-volatile variable (very rare)
int * volatile foo;
= volatile pointer to a volatile variable (if you're crazy)
int volatile * volatile foo;

» |f you apply volatile to a struct or union, the entire contents of the
struct/union are volatile

= |f you don't want this behavior, you can apply the volatile qualifier to the
|nd|V|duaI members of the struct/union.
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The Use of volatile (1)

= A variable should be declared volatile if its value could change
unexpectedly
* Memory-mapped I/O registers
= Global variables that can be modified by an interrupt service
routine
= Global variables within multi-threaded applications

= Example: Let’s poll an 8-bit I/O status register at 0x1234 until it is
non-zero

unsigned int *ptr = (unsigned int *) 0x1234;
// wait for 1/O register to become non-zero
while (*ptr == 0);

// do something else
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The Use of volatile (2)

= Example: Write an interrupt-service routine for a serial-port to test
each character to see if it represents an EOL character. If it is, we
will set a flag to be TRUE.

int eol_rcvd = FALSE;
voidmain() { ... while (leol_rcvd) { A/ Wait } ..}

interrupt void rx_isr(void) { ... if (EOL==rx_char) { How might an Optimizer handle

this code? How would you fix it?
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Thoughts on volatile

What does the keyword volatile accomplish?
= Tells the compiler not to perform certain optimizations
= Tells the compiler not to use the cached version of the variable
» Indicates that that variable can change asynchronously

= Some compilers allow you to declare everything as volatile
= Don’t! It's a substitute for good thinking
= Can lead to less efficient code

Don’t blame the optimizer and don’t turn it off

If you are given a piece of code whose behavior is unpredictable
= Look for declarations of volatile variables
» Look for where you should declare a variable as volatile
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