18-349: Introduction to Embedded
Real-Time Systems

Lecture 4: ARM ASM Part 2 e ————

Anthony Rowe
Electrical and Computer Engineering

ia.

I!""- ---ﬁw il

Carnegie Mellon University

(‘.-*"

N A
«‘;/ks -------mrs« e

I

'(() EeNCt&clall\lgé%ﬁ |{th(e:‘: Carnegie Mellon University

Embedded Real-Time Systems

Kaboom Explained...

(T

l.f-;[“ o :} 4 F'F‘I_"E.I_I‘_._‘-'-).A ® C:} oo RPLVBUS

f'— Y EN J

) .
° e = :

Power Switch...

— V MIC94091 vs MIC94092
JTAG_SRST < ° RPI_YBU .‘;-EN'
UXRT_DTF <«

(O’ Ef\jt(”ﬁ'\ﬁ‘z%ﬂ NG 2 Carnegie Mellon University

Last Lecture

= EXxceptions

Vector Table

» Pipelining

What is it?
Why do we do it?

= ARM ISA Introduction

Move operations
Arithmetic operations
Logical operations
Comparison operations
Multiply operations
Conditionals

ectrical & Computer
) ENGINEERING

Embedded Real-Time Systems

Carnegie Mellon University

Embedded Real-Time Systems

RM ISA Quick Reference

ARM® and Thumb®-2 Instruction Set
Quick Reference Card

Key to Tables

Rm {, <opsh>} |See Table Register, optionally shifted by constant
<Operand2> See Table Flexible Operand 2. Shift and rotate are only available as part of Operand2. <reglist> A comma-separated list of registers, enclosed in braces { and }.
<fields> See Table PSR fields. <reglist-PC> |As<reglist>, must notinclude the PC.
<PSR> Either CPSR (Current Processor Status Register) or SPSR (Saved Processor Status Register) <reglist+PC> |As<reglist>,including the PC.
C*, V* Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later. +/= + or —. (+ may be omitted.)
<Rs|sh> Can be Rs or an immediate shift value. The values allowed for each shift type are the same as those || § See Table ARM architecture versions.
shown in Table Register, optionally shifted by constant. <iflags> Interrupt flags. One or more of a, i, £ (abort, interrupt, fast interrupt).
X, Y B meaning half-register [15:0], or T meaning [31:16]. <p_mode> See Table Processor Modes
<imm8m> ARM: a 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits. SPm SP for the processor mode specified by <p_mode>
Thumb: a 32-bit constant, formed by left-shifting an 8-bit value by any number of bits, or a bit <1sb> Least significant bit of bitfield.
pattern of one of the forms 0xXYXYXYXY, 0x00XY00XY or 0xXY00XY00. <width> Width of bitfield. <width> + <1sb> must be <= 32.
<prefix> See Table Prefixes for Parallel instructions {X} RsXis Rs rotated 16 bits if X present. Otherwise, RsX is Rs.
{IA|IB|DA|DB} |Increment After, Increment Before, Decrement After, or Decrement Before. {1} Updates base register after data transfer if ! present (pre-indexed).
IB and DA are not available in Thumb state. If omitted, defaults to IA. {S} Updates condition flags if S present.
<size> B, SB, H, or SH, meaning Byte, Signed Byte, Halfword, and Signed Halfword respectively. {T} User mode privilege if T present.
SB and SH are not available in STR instructions. {R} Rounds result to nearest if R present, otherwise truncates result.
Operation § |Assembler S updates | Action Notes
Add Add ADD{S} Rd, Rn, <Operand2> N Z C V |Rd:=Rn+ Operand2 N
with carry ADC{S} Rd, Rn, <Operand2> N Z C V |Rd:=Rn+Operand2 + Carry N
wide T2 |ADD Rd, Rn, #<imml2> Rd :=Rn + imm12, imm12 range 0-4095 T,P
saturating {doubled} SE|Q{D}ADD Rd, Rm, Rn Rd := SAT(Rm + Rn) doubled: Rd := SAT(Rm + SAT(Rn * 2)) Q
Address Form PC-relative address ADR Rd, <label> Rd := <label>, for <label> range from current instruction see Note L N,L
Subtract Subtract SUB{S} Rd, Rn, <Operand2> N Z C V |Rd:=Rn-Operand2 N
with carry SBC{S} R4, Rn, <Operand2> N Z C V |Rd:=Rn- Operand2 — NOT(Carry) N
wide T2 |SUB Rd, Rn, #<imml2> N Z C V |Rd:=Rn-imml2, immI2 range 0-4095 T,P
reverse subtract RSB{S} Rd, Rn, <Operand2> N Z C V |Rd:=Operand2 - Rn N
reverse subtract with carry RSC{S} R4, Rn, <Operand2> N Z C V |Rd:=Operand2 - Rn - NOT(Carry) A
saturating {doubled} 5E |Q{D}SUB R4, Rm, Rn Rd := SAT(Rm — Rn) doubled: Rd := SAT(Rm — SAT(Rn * 2)) Q
Exception return without stack SUBS PC, LR, #<imm8> PC =LR - imm8, CPSR = SPSR(current mode), imma8 range 0-255. T
Parallel Halfword-wise addition 6 |<prefix>ADD16 Rd, Rn, Rm Rd[31:16] := Rn[31:16] + Rm[31:16], Rd[15:0] := Rn[15:0] + Rm[15:0] G
arithmetic | Halfword-wise subtraction 6 |<prefix>SUB16 Rd, Rn, Rm Rd[31:16] := Rn[31:16] - Rm([31:16], Rd[15:0] := Rn[15:0] - Rm[15:0] ¢
Byte-wise addition 6 |<prefix>ADD8 Rd, Rn, Rm Rd[31:24] := Rn[31:24] + Rm[31:24], Rd[23:16] := Rn[23:16] + Rm[23:16], G
Rd[15:8] := Rn[15:8] + Rm[15:8], Rd[7:0] := Rn[7:0] + Rm[7:0]
Byte-wise subtraction 6 |<prefix>SUB8 Rd, Rn, Rm Rd[31:24] := Rn[31:24] — Rm[31:24], Rd[23:16] := Rn[23:16] - Rm[23:16], G
Rd[15:8] := Rn[15:8] — Rm[15:8], Rd[7:0] := Rn[7:0] — Rm[7:0]
Halfword-wise exchange, add, subtract | 6 |<prefix>ASX Rd, Rn, Rm Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] — Rm[31:16] G
Halfword-wise exchange, subtract, add 6 |<prefix>SAX Rd, Rn, Rm Rd[31:16] := Rn[31:16] — Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16] G
Unsigned sum of absolute differences 6 |USAD8 Rd, Rm, Rs Rd := Abs(Rm[31:24] — Rs[31:24]) + Abs(Rm[23:16] — Rs[23:16])
+ Abs(Rm[15:8] — Rs[15:8]) + Abs(Rm[7:0] — Rs[7:0])
and accumulate 6 |USADA8 Rd, Rm, Rs, Rn Rd := Rn + Abs(Rm[31:24] — Rs[31:24]) + Abs(Rm[23:16] — Rs[23:16])
+ Abs(Rm[15:8] — Rs[15:8]) + Abs(Rm[7:0] — Rs[7:0])

Electrical & Computer

ENGINEERING 1 Carnegie Mellon University

Embedded Real-Time Systems

Branch Instructions

To change the flow of execution or to call a routine

Supports subroutine calls, if-then-else structures, loops

Change of execution forces the pc to point to a new address

Different branch instructions on the ARM
= B{<cond>} label

= BL{<cond>} label

= BX{<cond>} Rm

(9' Eﬁ%ﬁaﬁgé%ﬁn | ﬁmér 5 Carnegie Mellon University

Embedded Real-Time Systems

Lecture Overview

= ARMASM Part 2

» Addressing Modes (review)
= Batch load
= Stack

» Memory Mapped Input Output (MMIO)

(D' Ef\clt&ﬁl\ﬁg%ﬁn | |\ujte(®;r 6 Carnegie Mellon University

Embedded Real-Time Systems

LDR and STR

» |LDR and STR instructions can load and store data on a boundary alignment
that is the same as the datatype size being loaded or stored

» LDR can only load 32-bit words on a memory address that is a multiple of 4
bytes — 0, 4, 8, and so on

= TDR r0O, [rl]

» Loads register rO with the contents of the memory address pointed to by
register r1

= STR r0, [rl]

= Stores the contents of register rO to the memory address pointed to by
register r1

Register r1 is called the base address register

{9’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁted 7 Carnegie Mellon University

LDR/STR Example

= The memory location to be accessed is held in a base register

Embedded Real-Time Systems

STR r0, [rl] ; Store contents of r0 to location pointed

; to by contents of rl.

ILDR r2, [rl] ; Load r2 with contents of memory location

; pointed to by contents of rl

r0
Source
Register 0x5
for STR
rl
Base
Register L.0%200 J —— ox200

ectrical & Computer
) ENGINEERING

Memory

Ox5

2 Destination
Ox5 Register
for LDR

Carnegie Mellon University

Embedded Real-Time Systems

Addressing Modes (1-4)

= ARM provides three addressing modes
= Preindex with writeback
= Preindex
= Postindex

* Preindex mode useful for accessing a single element in a data
structure

» Postindex and preindex with writeback useful for traversing an array

(9' Ef\(jt&iaﬁgé%ﬁn | ﬁteGr 9 Carnegie Mellon University

Embedded Real-Time Systems

Addressing Modes (2-4)

= Preindex

= Same as preindex with writeback, but does not update the base register
= Example: LDR r0, [rl, #4]

* Preindex with writeback
» Calculates address from a base register plus address offset
= Updates the address in the base register with the new address

» The updated base register value is the address used to access memory
= Example: LDR r0, [rl, #4]!

= Postindex

= Only updates the base register after the address is used
= Example: LDR r0, [rl], #4

(D’ PN CNEERING 10 Carnegie Mellon University

Embedded Real-Time Systems

Addressing Modes (3-4)

PRE r0O = 0x00000000
rl = 0x00009000

mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

Preindexing with writeback Preindexing Postindexing

LDR r0, [rl, #4]! LDR r0, [rl, #4] LDR r0, [rl], #4

POST r0 =0x02020202 POST rO = 0x02020202 POST rO0 = 0x01010101
rl =0x00009004 rl = 0x00009000 rl = 0x00009004

Embedded Real-Time Systems

Addressing Modes (4-4)

» Address <address> accessed by LDR/STR is specified by
= Abase register plus an offset

= Offset takes one of the three formats
1. Immediate: offset is a number that can be added to or subtracted from the
base register
Example: LDR rO, [rl, #8]; r0 & mem[rl+8]
LDR r0, [rl, #-8]; r0 & mem|[rl-8]

2. Register: offset is a general-purpose register that can be added to or
subtracted from the base register

Example: LDR rO, [rl, «r2]; r0 & mem[rl+r2]
LDR rO, [rl, -xr2]; r0 @ mem[rl-r2]

3. Scaled Register: offset is a general-purpose register shifted by an immediate
value and then added to or subtracted from the base register

Example: LDR r0, [rl,r2, LSL #2]; r0 & mem[rl+4d*r2]

{9’ PN CNEERING 12 Carnegie Mellon University

Embedded Real-Time Systems

Multiple-Register Transfer

Load-store-multiple instructions can transfer multiple registers between
memory and the processor in a single instruction
Advantages

= More efficient than single-register transfers for moving blocks of data around
memory

= More efficient for saving and restoring context and stacks

Disadvantages

= ARM does not interrupt instructions when executing = load-store multiple
Instructions can increase interrupt latency

Compilers can limit interrupt latency by providing a switch to control the
max number of registers that can be transferred on a load-store-multiple

LDM<cond><addrMode> Rn{!}, <registerList>{"}
STM<cond><addrMode> Rn{!}, <registerList>{"}

Electrical & Computer

ENGINEERING Carnegie Mellon University

Embedded Real-Time Systems

More on Load-Store-Multiple

Transfer occurs from a base-address register Rn pointing into memory

Transferred registers can be either
= Any subset of the current bank of registers (default)

= Any subset of the user mode bank of registers when in a privileged mode
(postfix instruction witha ‘")

= Processor not in user mode or system mode
= Writeback is not possible, 1.e., ! cannot be supported at the same time

* [fpc isin the list of registers, additionally copy spsr to cpsr
Register Rn can be optionally updated following the transfer
= [fregister Rn is followed by the ! character

Registers can be individually listed or lumped together as a range
= Use a comma with “{“ and “}” parentheses to list individual registers
= Usea “-” to indicate a range of registers

= Good practice to list the registers in the order of increasing register number
(since this 1s the usual order of memory transfer)

Electrical & Computer

ENGINEERI NG Carnegie MellOIl UIliVGl‘Sity

Embedded Real-Time Systems

Addressing Modes for
Load-Store-Multiple

= Suppose that N is the number of registers in the list of registers

" xxxIA (increment after)
= Start reading at address Rn; ending address is Rn + 4N - 4
" Rn! equalsRn + 4N

* xxxIB (increment before)
= Start reading at address Rn+4; ending address is Rn + 4N
" Rn! equalsRn + 4N

= xxxDA (decrement after)
» Start reading at address Rn — 4N + 4; ending address is Rn
" Rn! equalsRn - 4N

= xxxDB (decrement before)
= Start reading at address Rn — 4N; ending address isRn - 4
" Rn! equalsRn - 4N

= ARM convention: DB and DA are like loading the register list backwards
from sequentially descending memory addresses

(D' Eﬁt&ﬁl\ﬁfﬁn | |\ujte(;r Carnegie Mellon University

Embedded Real-Time Systems

Things to Remember

= Any register can be used as the base register
= Any register can be in the register list
= Order of registers in the list does not matter

* The lowest register always uses the lowest memory address regardless of
the order in which registers are listed in the instruction

= LDM and STM instructions only transfer words

= Unlike LDR/STR instructions, they don’ t transfer bytes or half-words
= (Can specify range instead of individual registers

= Example: LDMIA r10!, {rl2, r2-r7}

= [f the base register is updated (using !) in the instruction, then it cannot be
a part of the register set
= Example: LDMIA r10!, {r0, rl, r4, r10} 1snotallowed

(0’ Ef\(jt&iaﬁgé%ﬁn | ﬁted Carnegie Mellon University

Embedded Real-Time Systems

Examples

PRE rO = 0x00080010 0x00080020 0x05 A

rl = 0x00000000

r2 = 0x00000000 0x0008001c 0x04

r3 = Ux00000000 0x00080018 | 0x03

mem32 [0x8001c] = 0x04

mem32[0x80018] = 0x03 . 0x00080014 0x02

mem32 [0x80014] = 0x02 T

mem32 [0x80010] = 0x01 (original) 0x00060010 %01
0x0008000c 0x00

LDMIA r0O!, {rl-r3} LDMIB r0O!, {rl-r3}
POSTrO0O = 0x0008001c POSTrO = 0x0008001c
rl = 0x01 rl = 0x02
r2 = 0x02 r2 = 0x03
r3 = 0x03 r3 = 0x04

rsity

Embedded Real-Time Systems

Example 1: Saving & Restoring Registers

= Here' s what we want to accomplish
= Save the contents of registers r1, r2 and r3 to memory

= Mess with the contents of registers r1, r2 and r3

= Restore the original contents of r1, r2 and r3 from memory & restore r0

PRE rO = 0x00009000

rl = 0x09
r2 = 0x08
r3 = 0x07

; store contents to memory
STMIB r0!, {rl-r3}

, mess with registers rl, r2, r3
MOV rl, #1

MOV r2, #2

MOV r3, #3

, restore original r1, r2, r3
LDMDA rO!, {rl-r3} 4

ectrical & Computer
) ENGINEERING

0x0000900c 0x07 t

0x00009008 0x08

0x00009004 0x09
(origin]afll%—» 0x00009000

ARM convention: Highest memory
location maps to highest numbered

register

AL 11\/6 AU 1V 1\/11\)11 UniverSity

Embedded Real-Time Systems

Example 1: Block Copying

= Here' s what we want to accomplish

= Copy blocks of 32 bytes from a source address to a destination address
= r9 points to the start of the source data

= r10 points to the start of the destination data
= r11 points to the end of the source data

loop

; load 32 bytes from source address and update r 9 pointer
LDMIA r9!, {r0O-r’/}

; store 32 bytes to destination address and update r10 pointer
STMIA r10!, {rO-r7}

; check if we are done with the entire block copy
CMP r9, rilil

; continue until done
BNE loop

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Stack Operations

= ARM uses load-store-multiple instructions to accomplish stack operations
= Pop (removing data from a stack) uses load-multiple

= Push (placing data on a stack) uses store-multiple

= Stacks are ascending or descending

= Ascending (A): Grow towards higher memory addresses

= Descending (D): Grow towards lower memory addresses
= Stacks can be full or empty

= Full (F): Stack pointer sp points to the last used or full location

= Empty (E): Stack pointer sp points to the first unused or empty location
* Four possible variants

= Full ascending (FA) — LDMFA & STMFA

= Full descending (FD) — LDMFD & STMFED

= Empty ascending (EA) — LDMEA & STMEA

= Empty descending (ED) — LDMED & STMED

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Stacks on the ARM

= ARM has an ARM-Thumb Procedure Call Standard
(ATPCS)

= Specifies how routines are called and how registers are
allocated

= Stacks according to ATPCS
= Full descending

= What does this mean for you? / = ==
= Use STMFD to store registers on stack at procedure entry

= Use LDMFED to restore registers from stack at procedure
exit

= What do these handy aliases actually represent?
= STMFD = STMDB (store-multiple-decrement-before)
= LDMFD = LDMIA (load-multiple-increment-after)

(9' Ef\lct&iaﬁgé%hn NG Carnegie Mellon University

Example

PRE r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080014

STMFED sp!, {rl, r4d}

Sp
(final)

ectrical & Computer
) ENGINEERING

—

Embedded Real-Time Systems

0x00080018 0x05 |4
sp ——| 0x00080014 0x04
(original) 0x00080010 | Empty
0x0008000c Empty
0x00080018 0x05 | 4
0x00080014 0x04
0x00080010 0x03
0x0008000c 0x02

Carnegie Mellon University

Embedded Real-Time Systems

SW Stack Checking

Three stack attributes to be preserved (/swst assembler option)
Stack base

= Starting address of the stack in memory

= [f sp goes past the stack base, stack underflow error occurs

Stack pointer (sp)

= [nitially points to the stack base

= As data 1s inserted when a program executes, sp descends memory and points
to top of the stack

Stack limit (s1)
= [f sp passes the stack limit, a stack overflow error occurs
= ATPCS: r10 i1s defined as s1

» [f spislessthan r10 after items are pushed on the stack, stack overflow
occurs

(9’ PN CNEERING Carnegie Mellon University

Embedded Real-Time Systems

Call Chain

User Mode

®

BL func—,

(* STMFD r13!, {ri14}
BL mystery——

L
LDMFD ri13!, £r14}
MOV pc, rl

(* SUB ri, r0 #'A'

CMP rl, #'Z'-'A’ @ | cpsr_|
ADDLS r0 ro, #'a'-'A'
MOV pc, ri4 7

(=

R13 — Stack Pointer (SP)
R14 — Link Register (LR)
R15 — Program Counter (PC)

(D’ PN CNEERING 2 Carnegie Mellon University

Embedded Real-Time Systems

Instruction Support for Functions

main()

{
sum(a,b); // a,b:r4,r5

)

int sum(int x, int y)

{

return X +y;

}

address
1000 mov r0, r4 @ x
1004 mov r1,r5 @y
1008 bl sum @ Ir
1012 ...

2000 sum: ADD rO, rO, r1
2004 BX Ir @ MOV pc, Ir i.e., return

a
b
1012 branch to sum

< 0 Xr

(0? Eﬁﬁéﬁa&m Naéld ess 0% Carnegie Mellon University

Embedded Real-Time Systems

Register Saving Conventions

» When procedure yoo calls who:
= yoo is the caller
* who is the callee

» (Can Register be used for temporary storage?

= Conventions (ATPCS is part of ABI)
= Application Binary Interface (ABI)

= “Caller Save”
= Caller saves temporary values in its frame before the call
= RO-R3

= “Callee Save”
= Callee saves temporary values in its frame before using
» R4-R11 (sometimes R12)

{9’ Eﬁt&ﬁ'\%fﬁ“ NG Carnegie Mellon University

Embedded Real-Time Systems

Register Usage

Arguments into function
Result(s) from function
otherwise corruptible
(Additional parameters
passed on stack)

Register variables
Must be preserved

Scratch register
(corruptible)

Stack Pointer
Link Register
Program Counter

{3 ENGNEERINE

Register

r0

rl

r2

r3

- Stack base
- Stack limit if software stack checking selected

rl3/sp | - SP should always be 8-byte (2 word) aligned

rld/1xr | - R14 can be used as a temporary once value stacked

rl5/pc

Carnegie Mellon University

Embedded Real-Time Systems

Course Hardware

Raspberry Pi 2

BCM2836 SoC

Broadcom 900 MHz quad-core ARMCortex-A7
Cores: 4

L1 cache: 32 KB instruction, 32 KB data *

L2 cache: 512 KB *

RAM: 1 GB RAM (off chip)

SDHC slot for Flash

Broadcom VideoCore IV

Released Feb 2015

AND lots of 1/0 devices...

* Estimate based on sleuthing...

(9’ PN CNEERING 28 Carnegie Mellon University

Embedded Real-Time Systems

Rpi Boot Process

= 3 bootloaders
» First stage (on-chip ROM):
= ARM in RESET mode

» Has code to load FAT32 file system on SD card and loads
bootcode.bin into memory to be used by GPU

» Second stage (bootcode.bin):

= Enables on-chip RAM
» Loads start.elf from SD card into memory for GPU

» Third stage (start.elf):

= Contains GPU firmware and splits up the 1 GB of RAM between GPU
and ARM CPUs (more about this in lab1)

= Then looks on SD card for kernel.img and loads it to 0x8000 and
sets *one* ARM CPU pc=0x8000

» kernel.img -> Enables JTAG hardware

(O’ PN CNEERING 26 Carnegie Mellon University

Embedded Real-Time Systems

Interfacing Peripheral
Devices to the Processor

= So far we have looked at the ARM instruction set, programmer s model
= Up next: How do we interface peripheral devices to the processor?
= We will look at

= How do we set up (configure) peripheral devices?

= How do we check the status of the devices?

= How do we communicate with peripheral devices?

(D' Ef\clt&ﬁl\ﬁg%ﬁn | |\ujte(®;r Carnegie Mellon University

Embedded Real-Time Systems

Software Addressing of I/O Devices

= Two ways of addressing I/0O devices from the CPU
= Memorymapped I/O
= Devices are mapped in memory address space, e.g., the 7-segment LED
= Standard load and store instruction can manipulate devices
= Port-mapped I/0
= Devices are not kept in memory address space
= Special processor instructions request data from devices
= Example
IN REG, PORT

OUT REG, PORT
= Which one is better?

= Memorymapped I/O uses the same load/store paradigm, but costs some of the
address space

= Full address space is available for port-mapped I/O, but requires extra
instructions and control signals from the CPU

(9’ Eﬁt&iﬁgﬁ%ﬁ ﬁteGr Carnegie Mellon University

Embedded Real-Time Systems

Example

= Device manufacturer will typically specify the registers that will be used to
set up and control the device

» The hardware designers will specify the address of these devices on your
system

= You will write code to set up the devices, use the devices

(9' Ef\it&iaﬁgé%én | ﬁmé Carnegie Mellon University

Embedded Real-Time Systems

Example

= Example: Suppose your hardware board has a 7-segment LED display

= Assume that the device manufacturer specifies that there is a register that can be
written to display a character on the LED

= The device manufacturer will also provide a table that determines the contents
of the register for each character to be displayed)

= The hardware designer will specify the address where this register is mapped
(assume that you are given that the device is mapped at 0x20200000
= If you wanted to display a character “P” on the LED, the code you will
write will look like
LDR R0O,=0x20200000
MOV R1, #0x0C
STRB R1, [RO]

// LED character map

#define LEDcharP 0x0c
#define LEDcharH 0x09
#define LEDcharA 0x08

ectrical & Computer
) ENGINEERING

Embedded Real-Time Systems

Writing Code to Access the Devices

= Portability issues — hard-coding the address may pose problems in moving
to a new board where the address of the register is different

LDR RO,=0x20200000
MOV R1,#0x0C
STRB R1, [RO]

» Should use EQU assembler directive: Equates a symbolic name (e.g.,
BASE) to a numeric value

BASE EQU 0x20200000
LDR RO, =BASE
= (an also access devices using C programs
= C pointers can be used to write to a specific memory location
unsigned char *ptr;
ptr = (unsigned char *) 0x20200000;
*ptr = (unsigned char) 0x0C;

(D' Eﬁt&ﬁl\ﬁfﬁn | |\ujte(;r Carnegie Mellon University

Embedded Real-Time Systems

I/O Register Basics

= [/O Registers are NOT like normal memory
= Device events can change their values (e.g., status registers)

= Reading a register can change its value (e.g., error condition reset)

= For example, can't expect to get same value if read twice

Some are readonly (e.g., receive registers)

Some are writeonly (e.g., transmit registers)

Sometimes multiple I/O registers are mapped to same address

= Selection of one based on other info (e.g., read vs. write or extra control

bits)

= Cache must be disabled for memorymapped addresses — why?

= When polling I/O registers, should tell compiler that value can change on
its own and therefore should not be stored in a register

" volatile int *ptr; (orint volatile *ptr;)

(9’ Eﬁt&ﬁaﬁ‘gﬁ%ﬁ“ NG Carnegie Mellon University

Embedded Real-Time Systems

Making the case for volatile

= Have you experienced any of the following in your C/C++ embedded
code?

= (Code that works fine-until you turn optimization on

= (Code that works fine-as long as interrupts are disabled

= Flaky hardware drivers

= Tasks that work fine in isolation-yet crash when another task is enabled

= volatile is a qualifier that is applied to a variable when it is declared

= [t tells the compiler that the value of the variable may change at any time---
most importantly, even with no action being taken by the code that the
compiler finds nearby

{9’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁted Carnegie Mellon University

Embedded Real-Time Systems

Syntax of volatile

volatile variable
volatile int foo;
int volatile foo;
= pointer to a volatile variable
volatile int *foo;
int volatile *foo;
= volatile pointer to a non-volatile variable (very rare)
int * volatile foo;
= volatile pointer to a volatile variable (if you're crazy)
int volatile * volatile foo;

» |f you apply volatile to a struct or union, the entire contents of the
struct/union are volatile

= |f you don't want this behavior, you can apply the volatile qualifier to the
|nd|V|duaI members of the struct/union.

(D' Eﬁtécﬁl\j |5(|:-:0|r2‘n | |\ujte(;r Carnegie Mellon University

Embedded Real-Time Systems

The Use of volatile (1)

= A variable should be declared volatile if its value could change
unexpectedly
* Memory-mapped I/O registers
= Global variables that can be modified by an interrupt service
routine
= Global variables within multi-threaded applications

= Example: Let’s poll an 8-bit I/O status register at 0x1234 until it is
non-zero

unsigned int *ptr = (unsigned int *) 0x1234;
// wait for 1/O register to become non-zero
while (*ptr == 0);

// do something else

(() Emsﬁ&%ﬁ%ith this code? How wo(ﬁ&l]ﬂ@giﬂtMellon University

Embedded Real-Time Systems

The Use of volatile (2)

= Example: Write an interrupt-service routine for a serial-port to test
each character to see if it represents an EOL character. If it is, we
will set a flag to be TRUE.

int eol_rcvd = FALSE;
voidmain() { ... while (leol_rcvd) { A/ Wait } ..}

interrupt void rx_isr(void) { ... if (EOL==rx_char) { How might an Optimizer handle

this code? How would you fix it?

(0' Ef\(jt&iaﬁgé%ﬁn | ﬁmér Carnegie Mellon University

Embedded Real-Time Systems

Thoughts on volatile

What does the keyword volatile accomplish?
= Tells the compiler not to perform certain optimizations
= Tells the compiler not to use the cached version of the variable
» Indicates that that variable can change asynchronously

= Some compilers allow you to declare everything as volatile
= Don’t! It's a substitute for good thinking
= Can lead to less efficient code

Don’t blame the optimizer and don’t turn it off

If you are given a piece of code whose behavior is unpredictable
= Look for declarations of volatile variables
» Look for where you should declare a variable as volatile

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University

