18-349: Introduction to Embedded
Real-Time Systems

Lecture 5: Serial Buses e

Anthony Rowe
Electrical and Computer Engineering

ia.

I!""- ---ﬁw il

Carnegie Mellon University

(‘.-*"

N A
«‘;/ks -------mrs« e

I

'(() EeNCt&clall\lgé%ﬁ |{th(e:‘: Carnegie Mellon University

Embedded Real-Time Systems

Last Lecture

= ARMASM Part 2

= Addressing Modes
= Batch load
= Stack

» Memory Mapped Input Output (MMIO)

(D' Eﬁt&ﬁl\ﬁfﬁn | |\ujte(;r 2 Carnegie Mellon University

Lecture Overview

= Memory Mapped I/O (review)

Volatile

= Serial Communication

Asynchronous protocols
Synchronous protocols
RS-232 data interface
Parity bits

Serial and bit transmissions
SPI

12C

ectrical & Computer
) ENGINEERING ;

Embedded Real-Time Systems

Carnegie Mellon University

Memory Mapped I/O

Address
_ Data
CPU %_l
i i, Sontrol i
l|| Ill I|| ||l III ||I I|| Ill III ||I l|| Ill I|| ||I III ||I lll Ill
/0 [/0
HiEmory Interface oee Interface
Specialised eee (T 1 ese
dataand —»
control lines
I/Q - IKQ
Device Device

Physical Layout

ectrical & Computer
) ENGINEERING

0x202F

0x200F

1/0 Ports
Assigned
Addressing

0x2000

Space

RAM

Embedded Real-Time Systems

x2

N

Programmer’s View

Carnegie Mellon University

Embedded Real-Time Systems

Writing Code to Access the Devices

= Portability issues — hard-coding the address may pose problems in moving
to a new board where the address of the register is different
LDR RO, =0x20200000
MOV R1,#0x0C
STRB R1, [RO]

» Should use EQU assembler directive: Equates a symbolic name (e.g.,
BASE) to a numeric value

BASE EQU 0x20200000
LDR RO, =BASE

» (an also access devices using C programs
= C pointers can be used to write to a specific memory location

unsigned char *ptr;
ptr = (unsigned char *) 0x20200000;
*ptr = (unsigned char) 0x0C;

{9’ Eﬁt&ﬁl\ﬁfﬁn | ﬁteGr Carnegie Mellon University

Embedded Real-Time Systems

I/O Register Basics

= [/O Registers are NOT like normal memory
= Device events can change their values (e.g., status registers)

= Reading a register can change its value (e.g., error condition reset)

= For example, can't expect to get same value if read twice

Some are readonly (e.g., receive registers)

Some are writeonly (e.g., transmit registers)

Sometimes multiple I/O registers are mapped to same address

= Selection of one based on other info (e.g., read vs. write or extra control

bits)

= Cache must be disabled for memorymapped addresses — why?

= When polling I/O registers, should tell compiler that value can change on
its own and therefore should not be stored in a register

" volatile int *ptr; (orint volatile *ptr;)

(9’ Eﬁt&ﬁaﬁ‘gﬁ%ﬁ“ NG Carnegie Mellon University

Embedded Real-Time Systems

Making the case for volatile

= Have you experienced any of the following in your C/C++ embedded
code?

= (Code that works fine-until you turn optimization on

= (Code that works fine-as long as interrupts are disabled

= Flaky hardware drivers

= Tasks that work fine in isolation-yet crash when another task is enabled

= volatile is a qualifier that is applied to a variable when it is declared

= [t tells the compiler that the value of the variable may change at any time---
most importantly, even with no action being taken by the code that the
compiler finds nearby

{9’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁted Carnegie Mellon University

Embedded Real-Time Systems

Syntax of volatile

volatile variable
volatile int foo;
int volatile foo;
= pointer to a volatile variable
volatile int *foo;
int volatile *foo;
= volatile pointer to a non-volatile variable (very rare)
int * volatile foo;
= volatile pointer to a volatile variable (if you're crazy)
int volatile * volatile foo;

» |f you apply volatile to a struct or union, the entire contents of the
struct/union are volatile

= |f you don't want this behavior, you can apply the volatile qualifier to the
|nd|V|duaI members of the struct/union.

(D' Eﬁtécﬁl\j |5(|:-:0|r2‘n | |\ujte(;r Carnegie Mellon University

Embedded Real-Time Systems

The Use of volatile (1)

= A variable should be declared volatile if its value could change
unexpectedly
* Memory-mapped I/O registers
= Global variables that can be modified by an interrupt service
routine
= Global variables within multi-threaded applications

= Example: Let’s poll an 8-bit I/O status register at 0x1234 until it is
non-zero

unsigned int *ptr = (unsigned int *) 0x1234;
// wait for 1/O register to become non-zero
while (*ptr == 0);

// do something else

(() Emsﬁ&%ﬁ%ith this code? How wo(ﬁ&l]ﬂ@giﬂtMellon University

Embedded Real-Time Systems

The Use of volatile (2)

= Example: Write an interrupt-service routine for a serial-port to test
each character to see if it represents an EOL character. If it is, we
will set a flag to be TRUE.

int eol_rcvd = FALSE;
voidmain() { ... while (leol_rcvd) { A/ Wait } ..}

interrupt void rx_isr(void) { ... if (EOL==rx_char) { How might an Optimizer handle

this code? How would you fix it?

(0' Ef\(jt&iaﬁgé%ﬁn | ﬁmér Carnegie Mellon University

Embedded Real-Time Systems

Thoughts on volatile

What does the keyword volatile accomplish?
= Tells the compiler not to perform certain optimizations
= Tells the compiler not to use the cached version of the variable
» Indicates that that variable can change asynchronously

= Some compilers allow you to declare everything as volatile
= Don’t! It's a substitute for good thinking
= Can lead to less efficient code

Don’t blame the optimizer and don’t turn it off

If you are given a piece of code whose behavior is unpredictable
= Look for declarations of volatile variables
» Look for where you should declare a variable as volatile

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Why Serial Communication?

» Serial communication is a pin-efficient way of sending and 12
receiving bits of data

Sends and receives data one bit at a time over one wire

While it takes eight times as long to transfer each byte of data this way
(as compared to parallel communication), only a few wires are required

Typically one to send, one to receive (for full-duplex), and a common
signal ground wire

= Simplistic way to visualize serial port

Two 8-bit shift registers connected together

Output of one shift register (transmitter) connected to the input of the
other shift register (receiver)

Common clock so that as a bit exits the transmitting shift register, the bit
enters the receiving shift register

Data rate depends on clock frequency

(9’ Eﬁt&ﬁaﬁ‘gﬁ%ﬁ“ NG Carnegie Mellon University

Serial vs. Parallel

{

Serial

Parallel

Electrical & Computer

ENGINEERING

X

MCU 1 RX N MCU 2
signal
>
Data[0:7]
€ >
€ >
MCU 1 < > MCU 2
€ >
€ >
€ >
<€ >
<€ >

13

Embedded Real-Time Systems

Carnegie Mellon University

Embedded Real-Time Systems

Simplistic View of Serial Port Operation

Transmitter

n+1
n+2
n+3
n+4
n+5
n+6
n+7/
n+8

0/1/2|3(4|5|6|7
0/1/2/3]4|5|6
0/1/2(3]4]|5
0/1(2|3|4
0/1/2]3

0/1]2

0|1

0

l

Interrupt raised when

Transmitter (Tx) is empty

5> Byte has been transmitted

and next byte ready for loading

ectrical & Computer
) ENGINEERING

Receiver

n+1
n+2
n+3
n+4
n+5
n+6
n+/
n+8

~N

OIRINWIPAAULIIO |
RINW S OO
N Wb~ OO |
0o

@)}

~N

W OaRNe)RR N
—" "

Interrupt raised when
Receiver (Rx) is full

5> Byte has been received
and is ready for reading

Carnegie Mellon University

Embedded Real-Time Systems

Simple Serial Port

/ \ / Receive \
Buffer Register
0/1123/145\6/7
EEERRXXX,
011234567 %
Receive
Shift Register
Transmit
Shift Register [0(1/2/3|4/5/6 7 —
FEEEtEes
Transmit 01/1213/4/5/ 6|7
Hold Register
N AN /
Processor Peripheral

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Protecting Against Data Loss

= How can data be lost? 16

= |f the transmitter starts to send the next byte before the receiver has had a
chance to process/read the current byte

= |f the next byte is loaded at the transmitter end before the current byte has been
completely transmitted

= Most serial ports use FIFO buffers so that data is not lost
= Buffering of received bytes at receiver end for later processing
= Buffering of loaded bytes at transmitter end for later transmission
= Shift registers free to transmit and receive data without worrying about data loss

» Why does the size of the FIFO buffers matter?

(9' Ef\lct&iaﬁgé%hn NG Carnegie Mellon University

Embedded Real-Time Systems

Serial Port

4 01234567\/ 01234567\
FIFO Buffer FIFO Buffer
Frffffey Frrfffey
>0(1/2|3|4|5|6|7 |+ >0/112|3/4|5|6|7 |+
§ }

Clock B L Clock
>0/112|3/4|5|6|7 |— >0/1/2|3/4/5/6|7|—
EEEEE XX EEEEE XX

FIFO Buffer FIFO Buffer
012/ 3/14/5/6/7 01/2/3/14/5/6|7
N AN /
Processor Peripheral

(D' Eﬁt&ﬁaﬁ%%ﬂ |{jteGr Carnegie Mellon University

Embedded Real-Time Systems

What is RS-2327?

= So far, we’ ve talked about clocks being synchronized and using the 45
clock as a reference for data transmission

» Fine for short distances (e.g., within chips on the same board)

» When data is transmitted over longer distances (off-chip), voltage
levels can be affected by cable capacitance

= Alogic “1” might appear as an indeterminate voltage at the receiver
= \Wrong data might be accepted when clock edges become skewed

= Enter RS232: Recommended Standard number 232

» Serial ports for longer distances, typically, between PC and peripheral
» Data transmitted asynchronously, i.e., no reference clock
» Data provides its own reference clock

'(9' Ef\clt&ﬁl\ﬁg%ﬁn | [{itf;r Carnegie Mellon University

Embedded Real-Time Systems

Types of Serial Communications

= Synchronous communication 19

Data transmitted as a steady stream at regular intervals
All transmitted bits are synchronized to a common clock signal

The two devices initially synchronize themselves to each other, and
then continually send characters to stay synchronized

Faster data transfer rates than asynchronous methods, because it does
not require additional bits to mark the beginning and end of each data
byte

= Asynchronous communication

Data transmitted intermittently at irregular intervals

Each device uses its own internal clock resulting in bytes that are
transferred at arbitrary times

Instead of using time as a way to synchronize the bits, the data format is
used

Data transmission is synchronized using the start bit of the word, while
one or more stop bits indicate the end of the word

= Asynchronous communications slightly slower than synchronous

(9’ Eﬁt&ﬁaﬁ‘gﬁ%ﬁ“ | ﬁteGr Carnegie Mellon University

Embedded Real-Time Systems

Sync vs. Async

» Synchronous communications
» Requires common clock (SPI)
= Whoever controls the clock controls communication speed

= Asynchronous communications
= Has no clock (UART)

» Speed must be agreed upon beforehand (the baud-rate configuration
accomplishes that)

{9’ Eﬁt&ﬁ'\%fﬁ“ NG Carnegie Mellon University

Embedded Real-Time Systems

RS232 — Bits and Serial Bytes

» Serial ports on IBM-style PCs support asynchronous communication only

= A “serial byte” usually consists of
» Characters: 5-8 data bits
» Framing bits: 1 start bit, 1 parity bit (optional), 1-2 stop bits
= When serial data is stored on your computer, framing bits are removed, and this
looks like a real 8-bit byte

» Specified as number of data bits - parity type - number of stop bits
= 8-N-1 a eight data bits, no parity bit, and one stop bit
= 7/-E-2 a seven data bits, even parity, and two stop bits

MSB LSB

o 1 2 3 4 5 6 7

| | S B

Start bit Data bits Parity bit Stop bits

(9' Ef\lCt(rl,ﬁl\jgé%ﬁn NG Carnegie Mellon University

Parity Bits

= Simple error checking for the transmitted data 59
= Even parity

» The data bits produce an even number of 1s
= Odd parity

» The data bits produce an odd number of 1s

= Parity checking process

1. The transmitting device sets the parity bit to 0 or to 1 depending on the
data bit values and the type of parity checking selected.

2. The receiving device checks if the parity bit is consistent with the
transmitted data; depending on the result, error/success is returned

» Disadvantage
= Parity checking can detect only an odd number of bit-flip errors
= Multiple-bit errors can appear as valid data

(9’ Eﬁt&ﬁaﬁgﬁ%ﬁ“ NG Carnegie Mellon University

Embedded Real-Time Systems

Parity Example

8 bits including parity
7 bits of data (count of 1-bits)

even odd
0000000 0 00000000 @ 00000001
1010001 3 10100011 A 10100010
1101001 4 11010010 | 11010011
1111111 7 11111111 11111110

Value Typically Including Parity Bit

'(9' Eﬁt&ﬁl\ﬁfﬁn NG 23 Carnegie Mellon University

Embedded Real-Time Systems

Data Modulation

= When sending data over serial lines, logic signals are converted into a form ,,
the physical media (wires) can support

= RS232C uses bipolar pulses
= Any signal greater than +3 volts is considered a space (0)
= Any signal less than 3 volts is considered a mark (1)

= Conventions
= |dle line is assumed to be in high (1) state

= Each character begins with a zero (0) bit, followed by 5-8 data bits and
then 1, 11/2, or 2 closing stop bits

= Bits are usually encoded using ASCIl (American Standard Code for
Information Interchange)

{9’ Eﬁt&ﬁ'\%fﬁ“ NG Carnegie Mellon University

Embedded Real-Time Systems

RS-232 Signal Levels

25

Farity Two stop
bit bits

‘+15'J—
LSB MSB
O 1 c O 0 0 0 1 O 1 1
Space
=0}
| Ve I N S I
oV _f Inceterminate
Regon
‘ IW- ------ S G S S S S S S S S S S S — s D G G SR S S S S S S S — -
Mark
=1 o Seven Data Bits -
- SARRN
| BET-VE
Start

|- - |

Data packet comes ponding to the ASCIl character A

((f’%ﬁ(’gw E%ﬁn | |\ujte(@;r Carnegie Mellon University

Embedded Real-Time Systems

Terminology

» DTE: Data terminal equipment, e.g., PC
» DCE: Data communication equipment, e.g., modem, remote device
= Baud Rate

= Maximum number of times per second that a line changes state
= Not always the same as bits per second

26

RS-232 — et TELECOMMUN- g RS-232
COMMUNICATION : ICATION | COMMUNICATION

{9' Eﬁt& | University

Embedded Real-Time Systems

Serial Port Connector

= 9-pin (DB-9) or 25-pin (DB-25) connector 07
= Inside a 9-pin connector

= \What’ s a null modem cable?

Carrier Detect - Determines if the DCE is connected to a working
phone line

Receive Data - Computer receives information sent from the DCE
Transmit Data - Computer sends information to the DCE

Data Terminal Ready - Computer tells the DCE that it is ready to talk
Signal Ground - Pin is grounded

Data Set Ready - DCE tells the computer that it is ready to talk
Request To Send - Computer asks the DCE if it can send information
Clear To Send - DCE tells the computer that it can send information

Ring Indicator — Asserted when a connected modem has detected an
incoming call

(D' Eﬁt&ﬁaﬁ%%ﬂ |{jteGr Carnegie Mellon University

Embedded Real-Time Systems

RS-232 Pin Connections

HOST SYSTEM (DTE)
ASYNCHRONOUS RS-232
CONTROLLER DRIVERS/RECEIVERS
(UART)
™ Dc —
RD 04 a—
RTS [>-" a—
cTs ﬁq —
SERIAL PORT
DSR n<}] (TO MODEM)
-
DCD 94]
DTR Dc —
RI 94
| N » |
v '
TTLUCMOS RS-232
LOGIC LEVELS LOGIC LEVELS

'((I‘J’%NGW E?ﬁnl |\ujte(3r Carnegie Mellon University

Embedded Real-Time Systems

Handshaking

» Some RS232 connections using handshaking lines between DCE 29
and DTE

» RTS (ReadyToSend)
« Sent by the DTE to signal the DCE it is Ready To Send

= CTS (ClearToSend)
» Sent by the DCE to signal the DTE that it is Ready to Receive

» DTR (DataTerminalReady)
» Sent to DTE to inform the DCE that it is ready to connect

» DSR (DataSetRead)
» Sent to DCE to inform the DTE that it is ready to connect

» Handshaking lines can make it difficult to set up the serial
communications, but seamless after set-up.

» Also, software handshaking (XON/XOFF)

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Serial Data Communication Modes

Transmit

P

Simplex Mode

Transmission is possible
only in one direction.

ectrical & Computer
) ENGINEERING

30

Transmlt Transmit
or Receive >

< > »
l

Receive

Half-duplex Mode Full-duplex Mode

Data is transmitted in Data may be transmitted
one direction at a time but simultaneously in both
the direction can be directions.

changed.

Carnegie Mellon University

Embedded Real-Time Systems

Interfacing Serial Data to
Microprocessor

» Processor has parallel buses for data need to convert serial datato 31
parallel (and vice versa)

» Standard way is with UART

= UART Universal asynchronous receiver and transmitter

Chip Reg
Select
R/W
Control

Tx Data Reg Tx Shift Reg Tx Data

Status Reg TS

Control Reg

Rx Data Reg Rx Shift Reg Rx Data

RTS

'(K) Ef\it&iall\jgé%ﬁn | ﬁi‘&’ Carnegie Mellon University

Embedded Real-Time Systems

Flow Control

Necessary to prevent terminal from sending more data than the 2
peripheral can consume (and vice-versa)

» Higher data rates can result in missing characters (data-overrun errors)

Hardware handshaking

» Hardware in UART detects a potential overrun and asserts a handshake
line to prevent the other side from transmitting

= When receiving side can take more data, it releases the handshake line

Software flow-control
= Special characters XON and XOFF
» XOFF stops a data transfer (control-S or ASCII code 13)
= XON restarts the data transfer (control-Q or ASCII code 11)

Assumption is made that the flow-control becomes effective before
data loss happens

Electrical & Computer

ENGINEERING Carnegie Mellon University

Embedded Real-Time Systems

HyperTerminal / Minicom

= A (hyper) terminal program is an application that will enable a PC to
communicate directly with a serial port

= Can be used to display data received at the PC’ s serial port

33

= (Can be used to configure the serial port
= Baud rate
= Number of data bits

2x]f

x e C?CJ 1 Properties
. . b) _] Port Settings
= Number of parity bits Dl s3] o
= Number of StOp bits Bits per second [1200 =
= Flow control batabis: [=
Parity: INone LI
Stop hits: |1 LI
Flow control: ||t
Restore Defaults
’TI Cancel | Apply |
<« : i
Disconnect ted ‘Auto detect |Auto detect ‘SEPDLL |Cr‘lF‘9 W‘-’ apture |Pmr\t echo

(9' Ef\lCt(rl,ﬁl\jgé%ﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

UART and MMIO (Example)

#define UART2 BASE 0%20100000 34
#define UART2 LS DIV (UART2 BASE + 0x00)

#define UART2 MS DIV (UART2 BASE + 0x01)

#define UART2 TX REG (UART2 BASE + 0x00)

#define UART2 RX REG (UART2 BASE + 0x00)

#define UART2 INT ID (UART2 BASE + 0x01)

#define UART2 INT EN REG (UART2 BASE + 0x01)

#define UART2 FIFO CNTRL (UART2 BASE + 0x02)

#define UART2 LINE CNTRL (UART2 BASE + 0x03)

#define UART2 MODM CNTRL (UART2 BASE + 0x04)

#define UART2 LINE STAT (UART2 BASE + 0x05)

#define UART2 MODM STAT (UART2 BASE + 0x06)

#define UART2 SCRATCH (UART2 BASE + SCRATCH OFFSET)

(0’ Ef\(jt&iaﬁgé%ﬁn | ﬁted Carnegie Mellon University

Embedded Real-Time Systems

Example — RPI LCR Register

AUX_MU_LCR_REG Register (0x7E21 504C)

SyNopsis The AUX_MU_LCR_REG register controls the line data format and gives access to the
baudrate register

Bit(s) | Field Name Description Type | Reset
31:8 Reserved, write zero, read as don’t care
7 DLAB access | If set the first to Mini UART register give access the |R/W |0
the Baudrate register. During operation this bit must
be cleared.
6 Break If set high the UART1_TX line is pulled low R/W |0

continuously. If held for at least 12 bits times that will
indicate a break condition.

Reserved, write zero, read as don’t care

5:1 Some of these bits have functions in a 16550 0
compatible UART but are ignored here
0 data size If clear the UART works in 7-bit mode R/W |0

If set the UART works in 8-bit mode

{0’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁte(;r 35 Carnegie Mellon University

Embedded Real-Time Systems

Example — RPI status register

AUX_MU_STAT_REG Register (0x7E21 5064)

Transmit This is the inverse of bit 1

FIFO is full

Receiver This bit is set if there was a receiver overrun. That is:

overrun one or more characters arrived whilst the receive
FIFO was full. The newly arrived characters have
been discarded. This bit is cleared each time the
AUX_MU_LSR_REG register is read.

Transmitter is | If this bit is set the transmitter is idle.

idle If this bit is clear the transmitter is idle.

Receiver is
idle

If this bit is set the receiver is idle.
If this bit is clear the receiver is busy.
This bit can change unless the receiver is disabled

SyNopsis The AUX_MU_STAT_REG provides a lot of useful information about the internal status of
the mini UART not found on a normal 16550 UART.
Bit(s) | Field Name Description Type | Reset
31:28 Reserved, write zero, read as don’t care
27:24 | Transmit These bits shows how many symbols are stored in the | R 0
FIFO fill level | transmit FIFO
The value is in the range 0-8
23:20 Reserved, write zero, read as don’t care
19:16 |Receive FIFO | These bits shows how many symbols are stored in the |R 0
fill level receive FIFO
The value is in the range 0-8
15:10 Reserved, write zero, read as don’t care
9 Transmitter This bit is set if the transmitter is idle and the transmit | R 1
done FIFO is empty.
It is a logic AND of bits 2 and 8
8 Transmit If this bit is set the transmitter FIFO is empty. Thus it |R 1
FIFO is empty | can accept 8 symbols.
7 CTS line This bit shows the status of the UART1_CTS line. R 0
6 RTS status This bit shows the status of the UART1_RTS line. R 0

Space
available

If this bit is set the mini UART transmitter FIFO can
accept at least one more symbol.

If this bit is clear the mini UART transmitter FIFO is
full

{

Electrical & Computer

ENGINEERING

Carnegie Mellon University

Embedded Real-Time Systems

Serial vs. Parallel

= Serial ports 37
= Universal Asynchronous Receiver/Transmitter (UART): controller
= Takes the computer bus’ parallel data and serializes it
= Transfer rate of 115 Kbps
= Example usage: Modems

= Parallel ports

= Sends/receives the 8 bits in parallel over 8 different wires
= 50-100 KBps (standard), upto 2 MBps (enhanced)
= Example usage: Printers, Zip drives

PARALLEL

(9' Eﬁt&iaﬁgé%ﬁ NG Carnegie Mellon University

Embedded Real-Time Systems

Other Serial Buses

12C
RS'232 Two wire chip interconnect,

Point-to-point +/-12V multi-drop

125
RS_485 Audio format similar to SPI

Multi-drop RS-232
SPI

Four wire only chip
interconnect, multi-drop

Many more...

{9’ Eﬁt&ﬁl\ﬁfﬁn | ﬁteGr 38 Carnegie Mellon University

Embedded Real-Time Systems

Serial Peripheral Interconnect (SPI)

= Another kind of serial protocol in embedded systems (proposed by
Motorola)

= Four-wire protocol

» SCLK — Serial Clock

= MOSI/SIMO — Master Output, Slave Input

= MISO/SOMI — Master Input, Slave Output

= SS — Slave Select
» Single master device and with one or more slave devices
= Higher throughput than I12C and can do “stream transfers”
= No arbitration required

= But
= Requires more pins
= Has no hardware flow control

= No slave acknowledgment (master could be talking to thin air and not
even know it)

(D' Ef\clt&ﬁl\ﬁg%ﬁn | |\ujte(®;r Carnegie Mellon University

What is SPI?

Serial Bus protocol
* Fast, Easy to use, Simple
* Everyone supports it

Embedded Real-Time Systems

Digital Set Top Box

Integrated Controller

owerPs™

75H6051 03BM

1F11D00RPB KOREA = <
IBM39 STB02100 PRC 22C '

ectrical & Computer
1\ E'Nth'\JECERthG

Carnegie Mellon University

Embedded Real-Time Systems

SPI Basics

= A communication protocol using 4 wires
= Also known as a 4 wire bus

= Used to communicate across small distances
= Multiple Slaves, Single Master

= Synchronized

(9' Ef\(jt&iaﬁgé%ﬁn | ﬁteGr 41 Carnegie Mellon University

Embedded Real-Time Systems

SPI Capabilities

Always Full Duplex
= Communicating in two directions at the same time
» Transmission need not be meaningful

Multiple Mbps transmission speed

Transfers data in 4 to 16 bit characters

Multiple slaves
= Daisy-chaining possible

(D' Ef\clt&ﬁl\ﬁg%ﬁn | |\ujte(®;r 42 Carnegie Mellon University

Embedded Real-Time Systems

SPI Protocol

Wires:
= Master Out Slave In (MOSI)
= Master In Slave Out (MISO)

= System Clock (SCLK) VoS! Jwos sp
= Slave Select 1...N Mgspt!er MSISE? * > g/I_SISO Slave
SS2
5_3 I
—p| SCLK
= Master Set Slave Select low "
» SS
= Master Generates Clock] scix
——p| MOSI SPI
MISO Slave
L—— P SS

Shift registers shift in and out data

(0’ Ef\(jt&iaﬁgé%ﬁn | ﬁted 43 Carnegie Mellon University

Embedded Real-Time Systems

SPIl Wires in Detail

MOSI — Carries data out of Master to Slave

MISO — Carries data from Slave to Master
= Both signals happen for every transmission

SS BAR - Unique line to select a slave

SCLK — Master produced clock to synchronize data transfer

MOSI
.

- MISO

Slave
Master | SCLK v

» SS _BAR

{9’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁted 44 Carnegie Mellon University

Embedded Real-Time Systems

SPlI Communication

MASTER SLAVE
SCK > SCK
MOSI > MOSI
MISO + MISO
SS SS
Master to Slave Slave to Master
idle next byte
SCK
Clock from
Master A oo b
01234567 01234567
— i S S S T
most i ffepfo
Master-Out I S e N T
savein 1001010 EEEEEEE
Ox53 = ASCH'S" ¢ oo oboob
MISO
Master-in
Slave-Out
SS
Slave-Select

Electrical & Computer

ENGINEERING

{

45 Carnegie Mellon University

Embedded Real-Time Systems

SPI Pros and Cons

= Pros:
= Fast and easy
= Fast for point-to-point connections
= Easily allows streaming/Constant data inflow
* No addressing/Simple to implement
= Everyone supports it

= Cons:
» SS makes multiple slaves very complicated
= No acknowledgement ability
= No inherent arbitration
= No flow control

'(9' Eﬁt&iaﬁgé%ﬁn NG 4 Carnegie Mellon University

Embedded Real-Time Systems

12C Background

= [2C is also written as 12C (pronounced “eye-squared-see” or “eye-
two-see”)
= Stands for Inter-Integrated Circuit (11C)

= Two-wire party-line bus for “inside the box” communication

» Intended for short-range communication between ICs on a circuit
board or across boards in an embedded system
= |2C devices commonly used in industrial applications

= EEPROMSs, thermal sensors, real-time clocks, RF tuners, video
decoders/encoders

» Philips Semiconductors is the primary champion of [12C

= Specification publicly available at
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

» Qriginally developed for communication between devices inside a TV
set in the mid-1980s

{0’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁte(;r Carnegie Mellon University

Embedded Real-Time Systems

12C Purpose

= Designed by Philips ~20 years ago
» QOriginal purpose was to allow easy communication between
components which resided on the same circuit board

= Combines hardware and software protocols to provide a bus
interface that can connect many peripheral devices

= |2C is now not only used on single boards, but also to connect
components which are linked via cable

= All 12C-compatible devices have an on-chip interface that allows
them to communicate directly with each other via the 12C-bus

= Supports easy, ready-to-use interfacing of various boards and digital
circuits (even if they are independently designed)

= Allows for “plug-and-play” and evolution of ICs into a larger system

(9' Ef\c]t&iaﬁgé%ﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

12C Characteristics

= Only two bus lines are required
» Each device connected to the bus is software-addressable by a
unique address and
= Simple master/slave relationships
= True multi-master bus including collision detection and arbitration to
prevent data corruption if two or more masters simultaneously
initiate data transfer
= Serial, 8-bit oriented, bidirectional data transfers
= Up to 100 kbit/s in the standard mode
= Up to 400 kbit/s in the fast mode
= High-speed (3.4 Mbps), 12C version2.0

= On-chip filtering rejects spikes on the bus data line to preserve data
integrity

(9' Eﬁ%ﬁaﬁgé%ﬁn | ﬁmér Carnegie Mellon University

Embedded Real-Time Systems

12C Design Criteria

= First of all, this is a serial bus

Targeting 8-bit microcontroller applications
Serial vs. parallel — anyone remember pros and cons?

= Criteria for design of [2C

Need to avoid confusion between connected devices

Fast devices must be able to communicate with slow ones

Protocol must not be dependent on the devices that it connects

Need to have a mechanism to decide who controls the bus and when

If different devices with different clock speeds are connected, the bus
clock speed must be defined

(9’ Eﬁt&ﬁaﬁgﬁ%ﬂ |{jteGr Carnegie Mellon University

Embedded Real-Time Systems

12C Detalils

= Two lines: Serial data line (SDA) & serial clock line (SCL)
= Each I2C device recognized by a unique address
= Each I12C device can be either a transmitter or receiver

= |2C devices can be masters or slaves for a data transfer

= Master (usually a microcontroller): Initiates a data transfer on the bus,
generates the clock signals to permit that transfer, and terminates the
transfer

= Slave: Any device addressed by the master at that time
= Roles/relationships are not permanent

|

12C

Peripheral |

(9’ PN CNEERING Carnegie Mellon University

Embedded Real-Time Systems

|2C-Connected System

MICRO- LCD STATIC
CONTROLLER DRIVER RAM OR
A EEPROM

SDA

SCL

—

MICRO-
CONTROLLER
ADC B

Example 12C-connected system with two microcontrollers
(Source: 12C Specification, Philips)

(9' Eﬁ%ﬁaﬁgé%ﬁn | ﬁmér Carnegie Mellon University

Embedded Real-Time Systems

Master-Slave Relationships

= Masters can operate as master-transmitters or master-receivers
= Suppose microcontroller A wants to send information to
microcontroller B
= A (master) addresses B (slave)
= A (master-transmitter), sends data to B (slave-receiver)
= Aterminates the transfer.

= |f microcontroller A wants to receive information from microcontroller
B

= A (master) addresses microcontroller B (slave)
= A (master-receiver) receives data from B (slave-transmitter)
= Aterminates the transfer

* In both cases, the master (microcontroller A) generates the timing
and terminates the transfer

{9’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁted Carnegie Mellon University

Embedded Real-Time Systems

Multi-Master Capability

= Clearly, more than one microcontroller can be connected to the bus
= What if both microcontrollers want to control the bus at the same time?

= Multi-master 12C capability supports this without corrupting the
message

= Wired-AND connection of all 12C interfaces to the bus for arbitration

= |f two or more masters try to put information onto the bus, the first to
produce a ‘one’ when the other produces a ‘zero’ loses

= Clock signals during arbitration are a synchronized combination of
the clocks generated by the masters using the wired-AND
connection to the SCL line

= (Generation of clock signals on the bus

= Each master generates its own clock signals when transferring data on
the bus

= A master’ s bus clock signals can be altered when stretched by a slow-
slave device holding down the clock line, or by another master during
arbitration

(9' Ef\(jt&iaﬁgé%ﬁn | ﬁteGr Carnegie Mellon University

Embedded Real-Time Systems

Connecting 12C Devices to the Bus

» +VDD
PULL-UP
RESISTORS g, H Rp

SDA (SERIAL DATA LINE)

s 2 s 2
SCL (SERIAL CLOCK LINE

9 2 2 2 2
r———————— —— P ——————|————————— ——
SCLK	SCLK	
! — 1	+— —	
SCLKN1 DATAN{	SCLKN2 DATAN2	
OUTJj OUTJj	ouri OUTJ__	
- B	B B	
I sclk	DATA <	: I sclk] DATA <
IN \I IN IN \I IN		
Lo I T]
DEVICE 1 DEVICE 2

ectrical & Computer
) ENGINEERING

Carnegie Mellon University

Embedded Real-Time Systems

Addressing

First byte of transfer contains the slave address and the data direction
= Address is 7 bits long, followed by the direction bit
= Like all data bytes, address is transferred with the most significant bit first

= 7-bit address space allows for 128 unique I12C device addresses
= 16 addresses are reserved for special purposes
= Leaves only 112 addresses with this 7-bit address scheme

= New 10-bit address scheme has been introduced
= “General call” broadcast — to address every device on the bus
» What is the maximum number of devices in 12C limited by?

START mé ACK
(L IIIIIIIII IIIIII“
Slave Address STOP

(9’ PN CNEERING Carnegie Mellon University

Embedded Real-Time Systems

Clock Stretching

= Form of flow control

» An addressed slave device may hold the clock line low after
receiving (or sending) a bit, indicating that it is not yet ready to
process more data

» Master that is communicating with the slave will attempt to raise the
clock to transfer the next bit, but

= |f the slave is clock stretching, the clock line will still be low

= Mechanism allows receivers that cannot keep up with a transmitter
to control the flow of incoming data

(0’ Ef\(jt&iaﬁgé%ﬁn | ﬁted Carnegie Mellon University

