
Embedded	Real-Time	Systems

18-349: Introduction to Embedded
Real-Time Systems

Lecture 5: Serial Buses
Anthony Rowe
Electrical and Computer Engineering
Carnegie Mellon University

Embedded	Real-Time	Systems

Last Lecture

2

§ ARM ASM Part 2
§ Addressing Modes
§ Batch load
§ Stack

§ Memory Mapped Input Output (MMIO)

Embedded	Real-Time	Systems

Lecture Overview
§ Memory Mapped I/O (review)

§ Volatile

§ Serial Communication
§ Asynchronous protocols
§ Synchronous protocols
§ RS-232 data interface
§ Parity bits
§ Serial and bit transmissions
§ SPI
§ I2C

3

Embedded	Real-Time	Systems

Memory Mapped I/O

4

Physical	Layout Programmer’s	View

Embedded	Real-Time	Systems

Writing Code to Access the Devices
§ Portability issues – hard-coding the address may pose problems in moving

to a new board where the address of the register is different
LDR R0,=0x20200000
MOV R1,#0x0C

STRB R1,[R0]

§ Should use EQU assembler directive: Equates a symbolic name (e.g.,
BASE) to a numeric value
BASE EQU 0x20200000

LDR R0, =BASE

§ Can also access devices using C programs
§ C pointers can be used to write to a specific memory location
unsigned char *ptr;

ptr = (unsigned char *) 0x20200000;

*ptr = (unsigned char) 0x0C;

Embedded	Real-Time	Systems

I/O Register Basics
§ I/O Registers are NOT like normal memory

§ Device events can change their values (e.g., status registers)
§ Reading a register can change its value (e.g., error condition reset)

§ For example, can't expect to get same value if read twice
§ Some are readonly (e.g., receive registers)
§ Some are writeonly (e.g., transmit registers)
§ Sometimes multiple I/O registers are mapped to same address

§ Selection of one based on other info (e.g., read vs. write or extra control
bits)

§ Cache must be disabled for memorymapped addresses – why?
§ When polling I/O registers, should tell compiler that value can change on

its own and therefore should not be stored in a register
§ volatile int *ptr; (or int volatile *ptr;)

Embedded	Real-Time	Systems

Making the case for volatile
§ Have you experienced any of the following in your C/C++ embedded

code?
§ Code that works fine-until you turn optimization on
§ Code that works fine-as long as interrupts are disabled
§ Flaky hardware drivers
§ Tasks that work fine in isolation-yet crash when another task is enabled

§ volatile is a qualifier that is applied to a variable when it is declared
§ It tells the compiler that the value of the variable may change at any time---

most importantly, even with no action being taken by the code that the
compiler finds nearby

Embedded	Real-Time	Systems

Syntax of volatile
§ volatile variable

volatile int foo;
int volatile foo;

§ pointer to a volatile variable
volatile int *foo;
int volatile *foo;

§ volatile pointer to a non-volatile variable (very rare)
int * volatile foo;

§ volatile pointer to a volatile variable (if you’re crazy)
int volatile * volatile foo;

§ If you apply volatile to a struct or union, the entire contents of the
struct/union are volatile
§ If you don't want this behavior, you can apply the volatile qualifier to the

individual members of the struct/union.

Embedded	Real-Time	Systems

The Use of volatile (1)
§ A variable should be declared volatile if its value could change

unexpectedly
§ Memory-mapped I/O registers
§ Global variables that can be modified by an interrupt service

routine
§ Global variables within multi-threaded applications

§ Example: Let’s poll an 8-bit I/O status register at 0x1234 until it is
non-zero

unsigned int *ptr = (unsigned int *) 0x1234;
// wait for I/O register to become non-zero
while (*ptr == 0);
// do something else

What’s wrong with this code? How would you fix it?

Embedded	Real-Time	Systems

The Use of volatile (2)
§ Example: Write an interrupt-service routine for a serial-port to test

each character to see if it represents an EOL character. If it is, we
will set a flag to be TRUE.

int eol_rcvd = FALSE;
void main() {  ...  while (!eol_rcvd)  {  // Wait  }  ... }

interrupt void rx_isr(void) {  ...  if (EOL == rx_char)  {  eol_rcvd = TRUE;  }  ... }How	might	an	optimizer	handle
this	code?	How	would	you	fix	it?

Embedded	Real-Time	Systems

Thoughts on volatile
§ What does the keyword volatile accomplish?

§ Tells the compiler not to perform certain optimizations
§ Tells the compiler not to use the cached version of the variable
§ Indicates that that variable can change asynchronously

§ Some compilers allow you to declare everything as volatile
§ Don’t! It’s a substitute for good thinking
§ Can lead to less efficient code

§ Don’t blame the optimizer and don’t turn it off

§ If you are given a piece of code whose behavior is unpredictable
§ Look for declarations of volatile variables
§ Look for where you should declare a variable as volatile

Embedded	Real-Time	Systems

Why Serial Communication?
§ Serial communication is a pin-efficient way of sending and

receiving bits of data
§ Sends and receives data one bit at a time over one wire
§ While it takes eight times as long to transfer each byte of data this way

(as compared to parallel communication), only a few wires are required
§ Typically one to send, one to receive (for full-duplex), and a common

signal ground wire

§ Simplistic way to visualize serial port
§ Two 8-bit shift registers connected together
§ Output of one shift register (transmitter) connected to the input of the

other shift register (receiver)
§ Common clock so that as a bit exits the transmitting shift register, the bit

enters the receiving shift register
§ Data rate depends on clock frequency

12

Embedded	Real-Time	Systems

Serial vs. Parallel

13

MCU	1 MCU	2
TX

RX

MCU	1 MCU	2

signal

Data[0:7]

Serial

Parallel

Embedded	Real-Time	Systems

Simplistic View of Serial Port Operation

7
6 7
5 6 7
4 5 6 7
3 4 5 6 7
2 3 4 5 6 7
1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

n
n+1
n+2
n+3
n+4
n+5
n+6
n+7
n+8

Transmitter Receiver
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
0 1 2 3 4 5

0 1 2 3 4
0 1 2 3

0 1 2
0 1

0

n
n+1
n+2
n+3
n+4
n+5
n+6
n+7
n+8

Interrupt	raised when
Transmitter	(Tx)	is	empty
a Byte	has	been	transmitted
and	next	byte	ready	for	loading

Interrupt	raised when
Receiver	(Rx)	is	full
a Byte	has	been	received
and	is	ready	for	reading

Embedded	Real-Time	Systems

Simple Serial Port

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7Transmit	
Hold	Register

Transmit
Shift	Register

0 1 2 3 4 5 6 7

Processor Peripheral

0 1 2 3 4 5 6 7

Receive	
Shift	Register

Receive	
Buffer	Register

Embedded	Real-Time	Systems

Protecting Against Data Loss
§ How can data be lost?

§ If the transmitter starts to send the next byte before the receiver has had a
chance to process/read the current byte

§ If the next byte is loaded at the transmitter end before the current byte has been
completely transmitted

§ Most serial ports use FIFO buffers so that data is not lost
§ Buffering of received bytes at receiver end for later processing
§ Buffering of loaded bytes at transmitter end for later transmission
§ Shift registers free to transmit and receive data without worrying about data loss

§ Why does the size of the FIFO buffers matter?

16

Embedded	Real-Time	Systems

Serial Port

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
FIFO	Buffer

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
FIFO	Buffer

FIFO	Buffer

Processor Peripheral

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Clock

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Clock

FIFO	Buffer

Embedded	Real-Time	Systems

What is RS-232?
§ So far, we’ve talked about clocks being synchronized and using the

clock as a reference for data transmission
§ Fine for short distances (e.g., within chips on the same board)

§ When data is transmitted over longer distances (off-chip), voltage
levels can be affected by cable capacitance
§ A logic “1” might appear as an indeterminate voltage at the receiver
§ Wrong data might be accepted when clock edges become skewed

§ Enter RS232: Recommended Standard number 232
§ Serial ports for longer distances, typically, between PC and peripheral
§ Data transmitted asynchronously, i.e., no reference clock
§ Data provides its own reference clock

18

Embedded	Real-Time	Systems

Types of Serial Communications
§ Synchronous communication

§ Data transmitted as a steady stream at regular intervals
§ All transmitted bits are synchronized to a common clock signal
§ The two devices initially synchronize themselves to each other, and

then continually send characters to stay synchronized
§ Faster data transfer rates than asynchronous methods, because it does

not require additional bits to mark the beginning and end of each data
byte

§ Asynchronous communication
§ Data transmitted intermittently at irregular intervals
§ Each device uses its own internal clock resulting in bytes that are

transferred at arbitrary times
§ Instead of using time as a way to synchronize the bits, the data format is

used
§ Data transmission is synchronized using the start bit of the word, while

one or more stop bits indicate the end of the word
§ Asynchronous communications slightly slower than synchronous

19

Embedded	Real-Time	Systems

Sync vs. Async
§ Synchronous communications

§ Requires common clock (SPI)
§ Whoever controls the clock controls communication speed

§ Asynchronous communications
§ Has no clock (UART)
§ Speed must be agreed upon beforehand (the baud-rate configuration

accomplishes that)

Embedded	Real-Time	Systems

RS232 – Bits and Serial Bytes

§ Serial ports on IBM-style PCs support asynchronous communication only
§ A “serial byte” usually consists of

§ Characters: 5-8 data bits
§ Framing bits: 1 start bit, 1 parity bit (optional), 1-2 stop bits
§ When serial data is stored on your computer, framing bits are removed, and this

looks like a real 8-bit byte
§ Specified as number of data bits - parity type - number of stop bits

§ 8-N-1 a eight data bits, no parity bit, and one stop bit
§ 7-E-2 a seven data bits, even parity, and two stop bits

7 6 5 4 3 2 1 0

0							1						2						3						4							5						6						7
MSB LSB

Embedded	Real-Time	Systems

Parity Bits
§ Simple error checking for the transmitted data
§ Even parity

§ The data bits produce an even number of 1s
§ Odd parity

§ The data bits produce an odd number of 1s

§ Parity checking process
1. The transmitting device sets the parity bit to 0 or to 1 depending on the

data bit values and the type of parity checking selected.
2. The receiving device checks if the parity bit is consistent with the

transmitted data; depending on the result, error/success is returned

§ Disadvantage
§ Parity checking can detect only an odd number of bit-flip errors
§ Multiple-bit errors can appear as valid data

22

Embedded	Real-Time	Systems

Parity Example

23

Value	Typically	Including Parity	Bit

Embedded	Real-Time	Systems

Data Modulation
§ When sending data over serial lines, logic signals are converted into a form

the physical media (wires) can support
§ RS232C uses bipolar pulses

§ Any signal greater than +3 volts is considered a space (0)
§ Any signal less than 3 volts is considered a mark (1)

§ Conventions
§ Idle line is assumed to be in high (1) state
§ Each character begins with a zero (0) bit, followed by 5-8 data bits and

then 1, 11/2, or 2 closing stop bits
§ Bits are usually encoded using ASCII (American Standard Code for

Information Interchange)

24

Embedded	Real-Time	Systems

RS-232 Signal Levels

Source:	Dallas	Semiconductors
Application	note	83	

25

Embedded	Real-Time	Systems

Terminology
§ DTE: Data terminal equipment, e.g., PC
§ DCE: Data communication equipment, e.g., modem, remote device
§ Baud Rate

§ Maximum number of times per second that a line changes state
§ Not always the same as bits per second

26

Source:	Dallas	Semiconductors
Application	note	83	

Embedded	Real-Time	Systems

Serial Port Connector
§ 9-pin (DB-9) or 25-pin (DB-25) connector
§ Inside a 9-pin connector

§ Carrier Detect - Determines if the DCE is connected to a working
phone line

§ Receive Data - Computer receives information sent from the DCE
§ Transmit Data - Computer sends information to the DCE
§ Data Terminal Ready - Computer tells the DCE that it is ready to talk
§ Signal Ground - Pin is grounded
§ Data Set Ready - DCE tells the computer that it is ready to talk
§ Request To Send - Computer asks the DCE if it can send information
§ Clear To Send - DCE tells the computer that it can send information
§ Ring Indicator – Asserted when a connected modem has detected an

incoming call

§ What’s a null modem cable?

27

Embedded	Real-Time	Systems

RS-232 Pin Connections

Source:	Dallas	Semiconductors
Application	note	83	

Embedded	Real-Time	Systems

Handshaking
§ Some RS232 connections using handshaking lines between DCE

and DTE
§ RTS (ReadyToSend)

• Sent by the DTE to signal the DCE it is Ready To Send
§ CTS (ClearToSend)

• Sent by the DCE to signal the DTE that it is Ready to Receive
§ DTR (DataTerminalReady)

• Sent to DTE to inform the DCE that it is ready to connect
§ DSR (DataSetRead)

• Sent to DCE to inform the DTE that it is ready to connect
§ Handshaking lines can make it difficult to set up the serial

communications, but seamless after set-up.
§ Also, software handshaking (XON/XOFF)

29

Embedded	Real-Time	Systems

Transmit
Transmit

or Receive Transmit

Receive

Simplex	Mode
Transmission is possible
only	in	one	direction.

Half-duplex	Mode
Data is transmitted in
one	direction	at	a	time	but	
the	direction	can	be	
changed.

Full-duplex	Mode
Data	may	be	transmitted	
simultaneously	in	both	
directions.

Serial Data Communication Modes
30

Embedded	Real-Time	SystemsInterfacing Serial Data to
Microprocessor
§ Processor has parallel buses for data need to convert serial data to

parallel (and vice versa)
§ Standard way is with UART
§ UART Universal asynchronous receiver and transmitter

Chip	Reg
Select
R/W
Control

Tx	Data	Reg

Status	Reg

Control	Reg

Rx	Data	Reg

Tx	Shift	Reg

Rx	Shift	Reg

Tx	Clock

Rx	Clock

IRQ

CTS

RTS
Rx	Data

Tx	Data

Data
Bus
Buffers

D0-D7

31

Embedded	Real-Time	Systems

Flow Control
§ Necessary to prevent terminal from sending more data than the

peripheral can consume (and vice-versa)
§ Higher data rates can result in missing characters (data-overrun errors)

§ Hardware handshaking
§ Hardware in UART detects a potential overrun and asserts a handshake

line to prevent the other side from transmitting
§ When receiving side can take more data, it releases the handshake line

§ Software flow-control
§ Special characters XON and XOFF
§ XOFF stops a data transfer (control-S or ASCII code 13)
§ XON restarts the data transfer (control-Q or ASCII code 11)

§ Assumption is made that the flow-control becomes effective before
data loss happens

32

Embedded	Real-Time	Systems

HyperTerminal / Minicom
§ A (hyper) terminal program is an application that will enable a PC to

communicate directly with a serial port
§ Can be used to display data received at the PC’s serial port

§ Can be used to configure the serial port
§ Baud rate
§ Number of data bits
§ Number of parity bits
§ Number of stop bits
§ Flow control

33

Embedded	Real-Time	Systems

UART and MMIO (Example)
#define UART2_BASE 0x20100000
#define UART2_LS_DIV (UART2_BASE + 0x00)
#define UART2_MS_DIV (UART2_BASE + 0x01)
#define UART2_TX_REG (UART2_BASE + 0x00)
#define UART2_RX_REG (UART2_BASE + 0x00)
#define UART2_INT_ID (UART2_BASE + 0x01)
#define UART2_INT_EN_REG (UART2_BASE + 0x01)
#define UART2_FIFO_CNTRL (UART2_BASE + 0x02)
#define UART2_LINE_CNTRL (UART2_BASE + 0x03)
#define UART2_MODM_CNTRL (UART2_BASE + 0x04)
#define UART2_LINE_STAT (UART2_BASE + 0x05)
#define UART2_MODM_STAT (UART2_BASE + 0x06)
#define UART2_SCRATCH (UART2_BASE + SCRATCH_OFFSET)

34

Embedded	Real-Time	Systems

Example – RPI LCR Register

35

Embedded	Real-Time	Systems

Example – RPI status register

Embedded	Real-Time	Systems

Serial vs. Parallel
§ Serial ports

§ Universal Asynchronous Receiver/Transmitter (UART): controller
§ Takes the computer bus’ parallel data and serializes it
§ Transfer rate of 115 Kbps
§ Example usage: Modems

§ Parallel ports
§ Sends/receives the 8 bits in parallel over 8 different wires
§ 50-100 KBps (standard), upto 2 MBps (enhanced)
§ Example usage: Printers, Zip drives

37

SERIAL

PARALLEL

Embedded	Real-Time	Systems

Other Serial Buses

38

RS-232
Point-to-point	+/-12V

RS-485
Multi-drop	RS-232

I2C
Two	wire	chip	interconnect,	
multi-drop

SPI
Four	wire	only	chip	
interconnect,	multi-drop

I2S
Audio	format	similar	to	SPI

Many	more…

Embedded	Real-Time	Systems

Serial Peripheral Interconnect (SPI)
§ Another kind of serial protocol in embedded systems (proposed by

Motorola)
§ Four-wire protocol

§ SCLK — Serial Clock
§ MOSI/SIMO — Master Output, Slave Input
§ MISO/SOMI — Master Input, Slave Output
§ SS — Slave Select

§ Single master device and with one or more slave devices
§ Higher throughput than I2C and can do “stream transfers”
§ No arbitration required
§ But

§ Requires more pins
§ Has no hardware flow control
§ No slave acknowledgment (master could be talking to thin air and not

even know it)

Embedded	Real-Time	Systems

What is SPI?

• Serial Bus protocol
• Fast, Easy to use, Simple
• Everyone supports it

Embedded	Real-Time	Systems

SPI Basics
§ A communication protocol using 4 wires

§ Also known as a 4 wire bus

§ Used to communicate across small distances

§ Multiple Slaves, Single Master

§ Synchronized

41

Embedded	Real-Time	Systems

SPI Capabilities
§ Always Full Duplex

§ Communicating in two directions at the same time
§ Transmission need not be meaningful

§ Multiple Mbps transmission speed

§ Transfers data in 4 to 16 bit characters

§ Multiple slaves
§ Daisy-chaining possible

42

Embedded	Real-Time	Systems

SPI Protocol
§ Wires:

§ Master Out Slave In (MOSI)
§ Master In Slave Out (MISO)
§ System Clock (SCLK)
§ Slave Select 1…N

§ Master Set Slave Select low

§ Master Generates Clock

§ Shift registers shift in and out data

43

Embedded	Real-Time	Systems

SPI Wires in Detail
§ MOSI – Carries data out of Master to Slave

§ MISO – Carries data from Slave to Master
§ Both signals happen for every transmission

§ SS_BAR – Unique line to select a slave

§ SCLK – Master produced clock to synchronize data transfer

44

Embedded	Real-Time	Systems

SPI Communication

45

Embedded	Real-Time	Systems

SPI Pros and Cons
§ Pros:

§ Fast and easy
§ Fast for point-to-point connections
§ Easily allows streaming/Constant data inflow
§ No addressing/Simple to implement

§ Everyone supports it

§ Cons:
§ SS makes multiple slaves very complicated
§ No acknowledgement ability
§ No inherent arbitration
§ No flow control

46

Embedded	Real-Time	Systems

I2C Background
§ I2C is also written as I2C (pronounced “eye-squared-see” or “eye-

two-see”)
§ Stands for Inter-Integrated Circuit (IIC)

§ Two-wire party-line bus for “inside the box” communication
§ Intended for short-range communication between ICs on a circuit

board or across boards in an embedded system
§ I2C devices commonly used in industrial applications

§ EEPROMs, thermal sensors, real-time clocks, RF tuners, video
decoders/encoders

§ Philips Semiconductors is the primary champion of I2C
§ Specification publicly available at

http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
§ Originally developed for communication between devices inside a TV

set in the mid-1980s

Embedded	Real-Time	Systems

I2C Purpose
§ Designed by Philips ~20 years ago
§ Original purpose was to allow easy communication between

components which resided on the same circuit board
§ Combines hardware and software protocols to provide a bus

interface that can connect many peripheral devices
§ I2C is now not only used on single boards, but also to connect

components which are linked via cable
§ All I2C-compatible devices have an on-chip interface that allows

them to communicate directly with each other via the I2C-bus
§ Supports easy, ready-to-use interfacing of various boards and digital

circuits (even if they are independently designed)
§ Allows for “plug-and-play” and evolution of ICs into a larger system

Embedded	Real-Time	Systems

I2C Characteristics
§ Only two bus lines are required
§ Each device connected to the bus is software-addressable by a

unique address and
§ Simple master/slave relationships

§ True multi-master bus including collision detection and arbitration to
prevent data corruption if two or more masters simultaneously
initiate data transfer

§ Serial, 8-bit oriented, bidirectional data transfers
§ Up to 100 kbit/s in the standard mode
§ Up to 400 kbit/s in the fast mode
§ High-speed (3.4 Mbps), I2C version2.0

§ On-chip filtering rejects spikes on the bus data line to preserve data
integrity

Embedded	Real-Time	Systems

I2C Design Criteria
§ First of all, this is a serial bus

§ Targeting 8-bit microcontroller applications
§ Serial vs. parallel – anyone remember pros and cons?

§ Criteria for design of I2C
§ Need to avoid confusion between connected devices
§ Fast devices must be able to communicate with slow ones
§ Protocol must not be dependent on the devices that it connects
§ Need to have a mechanism to decide who controls the bus and when
§ If different devices with different clock speeds are connected, the bus

clock speed must be defined

Embedded	Real-Time	Systems

I2C Details
§ Two lines: Serial data line (SDA) & serial clock line (SCL)
§ Each I2C device recognized by a unique address
§ Each I2C device can be either a transmitter or receiver
§ I2C devices can be masters or slaves for a data transfer

§ Master (usually a microcontroller): Initiates a data transfer on the bus,
generates the clock signals to permit that transfer, and terminates the
transfer

§ Slave: Any device addressed by the master at that time
§ Roles/relationships are not permanent

Embedded	Real-Time	Systems

I2C-Connected System

Example	I2C-connected	system	with	two	microcontrollers	
(Source:	I2C	Specification,	Philips)

Embedded	Real-Time	Systems

Master-Slave Relationships
§ Masters can operate as master-transmitters or master-receivers
§ Suppose microcontroller A wants to send information to

microcontroller B
§ A (master) addresses B (slave)
§ A (master-transmitter), sends data to B (slave-receiver)
§ A terminates the transfer.

§ If microcontroller A wants to receive information from microcontroller
B
§ A (master) addresses microcontroller B (slave)
§ A (master-receiver) receives data from B (slave-transmitter)
§ A terminates the transfer

§ In both cases, the master (microcontroller A) generates the timing
and terminates the transfer

Embedded	Real-Time	Systems

Multi-Master Capability
§ Clearly, more than one microcontroller can be connected to the bus

§ What if both microcontrollers want to control the bus at the same time?
§ Multi-master I2C capability supports this without corrupting the

message
§ Wired-AND connection of all I2C interfaces to the bus for arbitration
§ If two or more masters try to put information onto the bus, the first to

produce a ‘one’ when the other produces a ‘zero’ loses
§ Clock signals during arbitration are a synchronized combination of

the clocks generated by the masters using the wired-AND
connection to the SCL line

§ Generation of clock signals on the bus
§ Each master generates its own clock signals when transferring data on

the bus
§ A master’s bus clock signals can be altered when stretched by a slow-

slave device holding down the clock line, or by another master during
arbitration

Embedded	Real-Time	Systems

Connecting I2C Devices to the Bus

Embedded	Real-Time	Systems

Addressing
§ First byte of transfer contains the slave address and the data direction

§ Address is 7 bits long, followed by the direction bit
§ Like all data bytes, address is transferred with the most significant bit first

§ 7-bit address space allows for 128 unique I2C device addresses
§ 16 addresses are reserved for special purposes
§ Leaves only 112 addresses with this 7-bit address scheme

§ New 10-bit address scheme has been introduced
§ “General call” broadcast – to address every device on the bus
§ What is the maximum number of devices in I2C limited by?

Embedded	Real-Time	Systems

Clock Stretching
§ Form of flow control
§ An addressed slave device may hold the clock line low after

receiving (or sending) a bit, indicating that it is not yet ready to
process more data

§ Master that is communicating with the slave will attempt to raise the
clock to transfer the next bit, but
§ If the slave is clock stretching, the clock line will still be low

§ Mechanism allows receivers that cannot keep up with a transmitter
to control the flow of incoming data

