
Embedded	Real-Time	Systems

18-349: Introduction to Embedded
Real-Time Systems

Anthony Rowe
Electrical and Computer Engineering
Carnegie Mellon University

Lecture	6:	Timers	and	Interrupts

Embedded	Real-Time	Systems

Lecture Overview
§ Timers

§ Interrupts
§ Interrupt Latency
§ Interrupt Handlers

§ Concurrency issues with interrupt handlers

2

Embedded	Real-Time	Systems

What is a Timer?
§ A device that uses a highspeed clock input to provide a series of

time or count-related events

÷
000000

0x1206

I/O	Control

Clock Divider

Counter Register

Reload
on Zero

Countdown Register

Interrupt to
Processor

System Clock

Embedded	Real-Time	Systems

Uses of Timers

§ Pause Function
§ Suspends task for a specified

amount of time
§ One-shot timer

§ Single one-time-only timeout
§ Periodic timer

§ Multiple renewable timeouts
§ Time-slicing

§ Chunks of time to each task
§ Watchdog timer

Embedded	Real-Time	Systems

• A	piece	of	hardware	that	can	be	used	to	reset	the	processor	in	
case	of	anomalies

• Typically	a	timer	that	counts	to	zero
– Reboots	the	system	if	counter	reaches	zero
– For	normal	operation	– the	software	has	to	ensure	that	the	counter	never	

reaches	zero	(“kicking	the	dog”)

Watchdog Timers

Embedded	Real-Time	Systems

Care of Your Watchdog
§ A watchdog can get the system out of many dangerous situations

§ But, be very careful
§ Bugs in the watchdog timer could perform unnecessary resets
§ Bugs in the application code could perform resets

§ Choosing the right kicking interval is important
§ System initialization process is usually lengthy

§ Some watchdogs can wait longer for the first kick than for the subsequent
kicks

§ What should you do, for example, if some functions in a for loop can
take longer than the maximum timer interval?

Embedded	Real-Time	Systems

Interrupts
Merriam-Webster:

§ “to break the uniformity or continuity of”

§ Informs a program of some external events
§ Breaks execution flow

Key questions:
§ Where do interrupts come from?
§ How do we save state for later continuation?
§ How can we ignore interrupts?
§ How can we prioritize interrupts?
§ How can we share interrupts?

7

Embedded	Real-Time	Systems

Interrupts
Interrupt	(a.k.a.	exception	or	trap):		
• An	event	that	causes	the	CPU	to	stop	executing	current	program
• Begin	executing	a	special	piece	of	code

• Called	an	interrupt	handler or	interrupt	service	routine (ISR)
• Typically,	the	ISR	does	some	work
• Then	resumes	the	interrupted	program

Interrupts	are	really	glorified	procedure	calls,	except	that	they:
• can	occur	between	any	two	instructions
• are	“transparent”	to	the	running	program	(usually)
• are	not	explicitly	requested	by	the	program	(typically)
• call	a	procedure	at	an	address	determined	by	the	type	of	interrupt,	not	

the	program

Embedded	Real-Time	Systems

Two basic types of interrupts (1/2)
§ Those caused by an instruction

§ Examples:
§ TLB miss
§ Illegal/unimplemented instruction
§ div by 0
§ SVC (supervisor call, e.g.: SVC #3)

§ Names:
§ Trap, exception

Embedded	Real-Time	Systems

Two basic types of interrupts (2/2)
§ Those caused by the external world

§ External device
§ Reset button
§ Timer expires
§ Power failure
§ System error

§ Names:
§ interrupt, external interrupt

Embedded	Real-Time	Systems

How it works
§ Something tells the processor core there is an interrupt
§ Core transfers control to code that needs to be executed
§ Said code “returns” to old program
§ Much harder then it looks.

§ Why?

Embedded	Real-Time	Systems

Devil is in the details
§ How do you figure out where to branch to?

§ How to you ensure that you can get back to where you started?

§ Don’t we have a pipeline? What about partially executed
instructions?

§ What if we get an interrupt while we are processing our interrupt?

§ What if we are in a “critical section?”

Embedded	Real-Time	Systems

Interrupt vs. Polled I/O
§ Polled I/O requires the CPU to ask a device (e.g. Ethernet controller)

if the device requires servicing
§ For example, if the Ethernet controller has changed status or

received packets
§ Software plans for polling the devices and is written to know

when a device will be serviced
§ Interrupt I/O allows the device to interrupt the processor, announcing

that the device requires attention
§ This allows the CPU to ignore devices unless they request

servicing (via interrupts)
§ Software cannot plan for an interrupt because interrupts can

happen at any time therefore, software has no idea when an
interrupt will occur

§ Processors can be programmed to ignore or mask interrupts
§ Different types of interrupts can be masked (IRQ vs. FIQ)

Embedded	Real-Time	Systems

Polling vs. InterruptDriven I/O
§ Polling requires code to loop until device is ready

§ Consumes lots of CPU cycles
§ Can provide quick response (guaranteed delay)

§ Interrupts don't require code to loop until the device is ready
§ Device interrupts processor when it needs attention
§ Code can go off and do other things
§ Interrupts can happen at any time

§ Requires careful coding to make sure other programs (or your own)
don't get messed up

§ What do you think real-time embedded systems use?

Embedded	Real-Time	Systems

Onto IRQs & FIQs: Interrupt Handlers

user program user program

IRQ Interrupt handler

Interrupt

• On interrupt, the processor will set the
corresponding interrupt bit in the cpsr
to disable subsequent interrupts of the
same type from occurring.

• However, interrupts of a higher priority
can still occur.

Task
IRQ

FIQ

time

Embedded	Real-Time	Systems

Timing Issues in Interrupts
§ Before an interrupt handler can do anything, it must save away the current

program's registers (if it touches those registers)
§ That's why the FIQ has lots of extra registers, to minimize CPU context-

saving overhead

user program user program

“servicing” interrupt

Interrupt

Task
IRQ

FIQ

time
CPU context saved

CPU context restored

Interrupt latency

Embedded	Real-Time	Systems

Servicing FIQs Within IRQ
§ Interrupts can occur within interrupt handlers

user program user program

IRQ Interrupt handler

Interrupt

Task
IRQ

FIQ

time

FIQ Interrupt handler

Second
Interrupt

Embedded	Real-Time	Systems

cpsr & spsr for IRQs and FIQs

§ Interrupt Disable bits
§ I = 1, disables the IRQ
§ F = 1, disables the FIQ

§ Mode bits
§ Processor mode differs

N ModeZ C V

2831 8 4 0

I F

Embedded	Real-Time	Systems

Exception Priorities

Exceptions Priority I bit
(1aIRQ Disabled)

F bit
(1aFIQ Disabled)

Reset 1 (highest) 1 1
Data Abort 2 1
Fast Interrupt
Request (FIQ)

3 1 1

Interrupt Request
(IRQ)

4 1

Prefetch Abort 5 1
Software Interrupt 6 1

Undefined
Instruction

6 (lowest) 1

Embedded	Real-Time	Systems

How are FIQs Faster?
§ FIQs are faster than IRQs in terms of interrupt

latency

§ FIQ mode has five extra registers at its disposal
§ No need to save registers r8 – r12
§ These registers are banked in FIQ mode
§ Convenient to store status between calls to the

handler

§ FIQ vector is the last entry in the vector table
§ The FIQ handler can be placed directly at the

vector location and run sequentially starting
from that location

§ Cache-based systems: Vector table + FIQ
handler all locked down into one block

User FIQ IRQ

Embedded	Real-Time	Systems

IRQ and FIQ ISR Handling

When	an	IRQ	occurs,	the	processor
– Copies	cpsr into	spsr_irq
– Sets	appropriate	cpsr bits	

• Sets	mode	field	bits	to	10010
• Disables	further	IRQs

– Maps	in	appropriate	banked	registers
– Stores	the	address	of	“next	instruction	+	4” in	lr_irq
– Sets	pc	to	vector	address	0x00000018

To	return,	exception	handler	needs	to:
– Restore	cpsr from	spsr_irq
– Restore	pc	from	lr_irq
– Return	to	user	mode

When	an	FIQ	occurs,	the	processor
- Copies	cpsr into	spsr_fiq
- Sets	appropriate	cpsr bits	

• Sets	mode	field	bits	to	10001
• Disables	further	IRQs	and	FIQs

- Maps	in	appropriate	banked	registers
- Stores	the	“next	instruction	+	4” in	lr_fiq
- Sets	pc	to	vector	address	0x0000001c0

To	return,	exception	handler	needs	to:
- Restore	cpsr from	spsr_fiq
- Restore	pc	from	lr_fiq
- Return	to	user	mode

IRQ	Handling FIQ	Handling

Embedded	Real-Time	Systems

Interrupt Controller

ARM

IRQ

FIQ

Interrupt	
Controller

Timers

Serial	Port

22

SPI

Embedded	Real-Time	Systems

Jumping to the Interrupt Handler
§ Non-vectored

§ Processor jumps to the same location irrespective of the kind of
interrupt

§ Hardware simplification
§ Vectored

§ Device supplies processor with address of interrupt service routine
§ Interrupt handler reads the address of the interrupt service routine

from a special bus
§ Why the different methods?

§ If multiple devices uses the same interrupt the processor must poll
each device to determine which device interrupted the processor
§ This can be time-consuming if there is a lot of devices

§ In a vectored system, the processor would just take the address
from the device (which dumps the interrupt vector onto a special
bus).

Embedded	Real-Time	Systems

Jumping to the Interrupt Handler
§ Auto-vectored

§ Multiple CPU interrupt inputs for interrupts of different priority
level
§ ARM has two – FIQ and IRQ
§ Other processors, like 68000, SPARC, may have 8 or more

§ Processor-determines address of interrupt service routine based
on type of interrupt

§ For ARM, pseudo-auto vectored IRQs and FIQs is implemented
using an on-chip interrupt controller

Embedded	Real-Time	Systems

Types of Interrupt Handlers
§ Non-nested interrupt handler (simplest possible)

§ Services individual interrupts sequentially, one interrupt at a time

§ Nested interrupt handler
§ Handles multiple interrupts without priority assignment

§ Prioritized (re-entrant) interrupt handler
§ Handles multiple interrupts that can be prioritized

Embedded	Real-Time	Systems

Non-Nested Interrupt Handler
§ Does not handle any further interrupts until the current interrupt is

serviced and control returns to the interrupted task

§ Not suitable for embedded systems where interrupts have varying
priorities and where interrupt latency matters
§ However, relatively easy to implement and debug

§ Inside the ISR (after the processor has disabled interrupts, copied
cpsr into spsr_mode, set the etc.)
§ Save context – subset of the current processor mode’s nonbanked

registers
§ Not necessary to save the spsr_mode – why?
§ ISR identifies the external interrupt source – how?
§ Service the interrupt source and reset the interrupt
§ Restore context
§ Restore cpsr and pc

Embedded	Real-Time	Systems

Nested Interrupt Handler
§ Allows for another interrupt to occur within the currently executing

handler
§ By re-enabling interrupts at a safe point before ISR finishes servicing

the current interrupt

§ Care needs to be taken in the implementation
§ Protect context saving/restoration from interruption
§ Check stack
§ Increases code complexity, but improves interrupt latency

§ Does not distinguish between high and low priority interrupts
§ Time taken to service an interrupt can be high for high-priority interrupts

27

Embedded	Real-Time	Systems

Prioritized (Re-entrant) Interrupt Handler
§ Allows for higher-priority interrupts to occur within the currently

executing handler
§ By re-enabling higher-priority interrupts within the handler
§ By disabling all interrupts of lower priority within the handler

§ Same care needs to be taken in the implementation
§ Protect context saving/restoration from interruption, check stack overflow

§ Does distinguish between high and low priority interrupts
§ Interrupt latency can be better for high-priority interrupts

28

Embedded	Real-Time	Systems

Interrupts and Stacks
§ Stacks are important in interrupt handling

§ Especially in handling nested interrupts
§ Who sets up the IRQ and FIQ stacks and when?

§ Stack size depends on the type of ISR
§ Nested ISRs require more memory space
§ Stack grows in size with the number of nested interrupts

§ Good stack design avoids stack overflow (where stack extends beyond
its allocated memory) – two common methods
§ Memory protection
§ Call stack-check function at the start of each routine

§ Important in embedded systems to know the stack size ahead of time
(as a part of the designing the application) – why?

29

Embedded	Real-Time	Systems

Resource Sharing Across Interrupts
§ Interrupts can occur asynchronously

§ Access to shared resources and global variables must be handled in
a way that does not corrupt the program

§ Normally done by masking interrupts before accessing shared data
and unmasking interrupts (if needed) afterwards
§ Clearly, when interrupt-masking occurs, interrupt latency will be higher

§ Up next – start with a simple keyboard ISR and then understand
§ What can happen when the ISR takes a while to execute
§ How do we improve its interrupt latency
§ What can go wrong

30

Embedded	Real-Time	Systems

Starting With a Simple Example
§ Keyboard command processing

The “B” key is pressed by the user

The “keyboard” interrupts the processor

Jump to keyboard ISR (non-nested)

keyboard_ISR() {

ch < Read keyboard input register

switch (ch) {

case ‘b’ : startApp(); break;

case ‘x’ : doSomeProcessing(); break;
...

}

} return	from	ISR

How long does this
processing take?

What happens if another
key is pressed or if a timer

interrupt occurs?

31

Embedded	Real-Time	Systems

Improving Interrupt Latency
§ Add a buffer (in software or hardware) for input characters.

§ This decouples the time for processing from the time between
keystrokes, and provides a computable upper bound on the time
required to service a keyboard interrupt

§ Commands stored in the input_buffer can be processed in the
user/application code

A	key	is	pressed	by	the	user

The	“keyboard” interrupts	the	processor

Jump	to	keyboard ISR

keyboard_ISR() {
*input_buffer++ = ch;
...

}

Stores	the	input	and	then	quickly	
returns	to	the	“main	program”

(process)

return	from	ISR

…
…
while (!quit){

if (*input_buffer){
processCommand(*input_buffer);
removeCommand(input_buffer);

}
}
…

Application	Code

32

Embedded	Real-Time	Systems

What Can Go Wrong? Buffer Processing

…
while (!quit){

if (*input_buffer){
processCommand(*input_buffer);
removeCommand(input_buffer);

}
}
…

keyboard_ISR(){
ch < Read ACIA input register
*input_buffer++ = ch;

}

return	from	ISR	

What happens if another command
is entered as you remove one from

the inputBuffer?

application	code

33

Embedded	Real-Time	Systems

Another Concurrency Problem
§ An application uses the serial port to print characters on the terminal

emulator (Hyper Terminal)
§ The application calls a function PrintStr to print characters to the terminal
§ In the function PrintStr, the characters to be printed are copied into an output

buffer (use of output buffer to reduce interrupt latency)

§ In the serial port ISR
§ See if there is any data to be printed (whether there are new characters in the

output buffer)
§ Copy data from the output buffer to the transmit holding register of the UART

§ The (new app) display also needs to print the current time on the
terminal – a timer is used (in interrupt mode) to keep track of time

§ In the timer ISR
§ Compute current time
§ Call PrintStr to print current time on the terminal emulator

Embedded	Real-Time	Systems

Another Example:
Buffer for Printing Chars to Screen

PrintStr(*string)
char *string;
{

while (*string) {
outputBuffer[tail++] = *string++;

}
}

timer_ISR(){
clockTicks++;
PrintStr(convert(clockTicks));

}

PrintStr(“this is a line”);

T H I S I S 2 : 3 0

T H I S I S

Jump	to	timer_ISR

tail	points	here	 and	a	timer	interrupt	occurs

35

Embedded	Real-Time	Systems

Critical Sections of Code
§ Pieces of code that must appear as an atomic action

T H I S I S

printStr(*string)
char *string;
{

MaskInterrupts();
while (*string){

outputBuffer[tail++]= *string++;
}

UnmaskInterrupts();
}

timer_ISR(){
clockTicks++;
printStr(convert(clockTicks));

}

printStr(“this is a line”);

T H I S I S A L I N E

Jump	to	timer_ISR happens	after printStr() completes

tail	points	here	 and	a	timer	interrupt	occurs

Atomic action
action that
“appears”'

to take place in a
single indivisible

operation

36

Embedded	Real-Time	Systems

Shared-Data Problems
§ Previous examples show what can go wrong when data is shared

between ISRs and application tasks

§ Very hard to find, and debug such concurrency problems (if they
exist)
§ Problem may not happen every time the code runs

§ In the previous example, you may not have noticed the problem if
the timer interrupt did not occur in the PrintStr function

§ Lessons learned
§ Keep the ISRs short
§ Analyze your code carefully, if any data is shared between ISRs and

application code

37

Embedded	Real-Time	Systems

Summary

38

§ Timers

§ Interrupts
§ Interrupt Latency
§ Interrupt Handlers

§ Concurrency issues with interrupt handlers

§ Next Lecture: ARM Optimization (NOT SWI and the Kernel)

