18-349: Introduction to Embedded
Real-Time Systems

Lecture 6: Timers and Interrupts

Anthony Rowe
Electrical and Computer Engineering
Carnegie Mellon University

(‘.-*"

N A
«‘;/ks -------mrs« e

I

'(() EeNCt&clall\lgé%ﬁ |{th(e:‘: Carnegie Mellon University

Embedded Real-Time Systems

Lecture Overview

= Timers

* |nterrupts
= Interrupt Latency
» Interrupt Handlers

= Concurrency issues with interrupt handlers

(D' Eﬁt&ﬁl\ﬁfﬁn | |\ujte(;r 2 Carnegie Mellon University

Embedded Real-Time Systems

What is a Timer?

= Adevice that uses a highspeed clock input to provide a series of
time or count-related events

Counter Register

System Clock 0x1206

’ ' Reload
: TN on e

B > 000000
Clock Divider Countdown Register
Interrupt to)
1/O Control
Processor

{0’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁte(;r Carnegie Mellon University

Embedded Real-Time Systems

Uses of Timers

Pause Function

= Suspends task for a specified
amount of time

= One-shot timer

= Single one-time-only timeout
» Periodic timer

= Multiple renewable timeouts
= Time-slicing

»= Chunks of time to each task
= Watchdog timer

(9' Ef\lct&iaﬁgé%hn NG Carnegie Mellon University

Embedded Real-Time Systems

Watchdog Timers

* A piece of hardware that can be used to reset the processor in
case of anomalies

* Typically a timer that counts to zero

— Reboots the system if counter reaches zero

— For normal operation — the software has to ensure that the counter never
reaches zero (“kicking the dog”)

w Reset [~
[(Watchdog Tlme; J) j brocossor }
1 Restart \
Clock T

(D’ Eﬁt&iaﬁgé%ﬂ NG Carnegie Mellon University

Embedded Real-Time Systems

Care of Your Watchdog

= A watchdog can get the system out of many dangerous situations

= But, be very careful
= Bugs in the watchdog timer could perform unnecessary resets
= Bugs in the application code could perform resets

= Choosing the right kicking interval is important

= System initialization process is usually lengthy

= Some watchdogs can wait longer for the first kick than for the subsequent
Kicks

» What should you do, for example, if some functions in a for loop can
take longer than the maximum timer interval?

ectrical & Computer :
(D ENGINEERING Carnegie M

Embedded Real-Time Systems

Interrupts

Merriam-Webster:
= “to break the uniformity or continuity of”

= [nforms a program of some external events
= Breaks execution flow

Key questions:

= Where do interrupts come from?

= How do we save state for later continuation?
= How can we ignore interrupts?

= How can we prioritize interrupts?

= How can we share interrupts?

(9' Ef\(jt(rﬁaﬁgé%én | ﬁmé Carnegie Mellon University

Embedded Real-Time Systems

Interrupts

Interrupt (a.k.a. exception or trap):
* An event that causes the CPU to stop executing current program
 Begin executing a special piece of code
 Called an interrupt handler or interrupt service routine (ISR)
* Typically, the ISR does some work
* Then resumes the interrupted program

Interrupts are really glorified procedure calls, except that they:
e can occur between any two instructions
e are “transparent” to the running program (usually)
e are not explicitly requested by the program (typically)
e call a procedure at an address determined by the type of interrupt, not
the program

(9' Eﬁ%ﬁaﬁgé%ﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Two basic types of interrupts (1/2)

= Those caused by an instruction
= Examples:
= TLB miss
= |[llegal/unimplemented instruction
= divby O
= SVC (supervisor call, e.g.: SVC #3)

= Names:
* Trap, exception

(D’ Eﬁt&iaﬁgé%ﬂ NG Carnegie Mellon University

Embedded Real-Time Systems

Two basic types of interrupts (2/2)

= Those caused by the external world
= External device

Reset button

= Timer expires

Power failure

System error

= Names:
* interrupt, external interrupt

(0' Eﬁt(rl,cﬁl\jgé%ﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

How it works

= Something tells the processor core there is an interrupt
= Core transfers control to code that needs to be executed
» Said code “returns” to old program

= Much harder then it looks.
= Why?

(9' Ef\it&iaﬁgé%én | ﬁmé Carnegie Mellon University

Embedded Real-Time Systems

Devil is Iin the details

= How do you figure out where to branch to?
= How to you ensure that you can get back to where you started?

= Don’t we have a pipeline? What about partially executed
instructions?

= What if we get an interrupt while we are processing our interrupt?

= What if we are in a “critical section?”

(0 Ef\cjt&iaﬁgé%ﬁn | ﬁmé Carnegie Mellon University

Embedded Real-Time Systems

Interrupt vs. Polled |/O

{

Polled I/O requires the CPU to ask a device (e.g. Ethernet controller)
if the device requires servicing

= For example, if the Ethernet controller has changed status or
received packets

= Software plans for polling the devices and is written to know
when a device will be serviced

Interrupt 1/0O allows the device to interrupt the processor, announcing
that the device requires attention

= This allows the CPU to ignore devices unless they request
servicing (via interrupts)

= Software cannot plan for an interrupt because interrupts can
happen at any time therefore, software has no idea when an
interrupt will occur

Processors can be programmed to ignore or mask interrupts
= Different types of interrupts can be masked (IRQ vs. FIQ)

Electrical & Computer

ENGINEERI NG Carnegie Mellon University

Embedded Real-Time Systems

Polling vs. InterruptDriven 1/O

= Polling requires code to loop until device is ready
= Consumes Jots of CPU cycles
= Can provide quick response (guaranteed delay)

» |Interrupts don't require code to loop until the device is ready
= Device interrupts processor when it needs attention
= Code can go off and do other things
» |nterrupts can happen at any time

» Requires careful coding to make sure other programs (or your own)
don't get messed up

» What do you think real-time embedded systems use?

(0 Ef\clt(rﬁaﬁgé%ﬁn | ﬁmér Carnegie Mellon University

Embedded Real-Time Systems

Onto IRQs & FIQs: Interrupt Handlers

»time

user program user program

Task | t | |
IRQ IRQ Interrupt handl?r

FIQ

* On interrupt, the processor will set the
corresponding interrupt bit in the cpsr
to disable subsequent interrupts of the
same type from occurring.

» However, interrupts of a higher priority
can still occur.

Interrupt

(D' Ef\clt&ﬁl\ﬁg%ﬁn | |\ujte(®;r Carnegie Mellon University

Embedded Real-Time Systems

Timing Issues in Interrupts

= Before an interrupt handler can do anything, it must save away the current
program's registers (if it touches those registers)

= That's why the FIQ has lots of extra registers, to minimize CPU context-
saving overhead

> time
Task user programA CPU context saved user program |
IRQ =
‘servicing” interrupt
FIQ CPU context restored

A
\ 4

Interrupt \

(0' Ef\(jt&iaﬁgé%ﬁn | ﬁmér Carnegie Mellon University

Interrupt latency

Embedded Real-Time Systems

Servicing FIQs Within IRQ

= Interrupts can occur within interrupt handlers

» time
uscer program user program

Task | A | |

IRQ Interrupt handler
IRQ A | |
FIQ FIQ Inten"upt handler

Interrupt
Second
Interrupt

{0’ Eﬁ%ﬁaﬁgé%ﬁn | ﬁte(;r Carnegie Mellon University

cpsr & spsr for IRQs and FIQs

Embedded Real-Time Systems

F Mode

Mode

31 28
NZCV
M[4:0]
= Interrupt Disable bits 10000

, 10011
= Mode bits

) 10111
= Processor mode differs

11011
11111

» [=1, disables the IRQ 10001
» F =1, disables the FIQ / 10010

User

Abort
Undef

System

'(9' Eﬁt&ﬁl\ﬁfﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Exception Priorities

Exceptions Priority I bit F bit
(1=IRQ Disabled) | (1=FIQ Disabled)
Reset 1 (highest) 1 1
Data Abort o) 1
Fast Interrupt 3 1 1
Request (FIQ)
Interrupt Request 4 1
(IRQ)
Prefetch Abort 5 1
Software Interrupt 6 1
Undeﬁged 6 (lowest) |
Instruction

(0 Ef\cjt&iaﬁgé%ﬁn | ﬁmé Carnegie Mellon University

How are FIQs Faster?

FIQs are faster than IRQs in terms of interrupt
latency

FIQ mode has five extra registers at its disposal
= No need to save registers r8 — r12
= These registers are banked in FIQ mode

= (Convenient to store status between calls to the
handler

FIQ vector is the last entry in the vector table

= The FIQ handler can be placed directly at the
vector location and run sequentially starting
from that location

Cache-based systems: Vector table + FIQ
handler all locked down into one block

) ENGINEERING

Embedded Real-Time Systems

User FIOQ
RO RO
R1 R1
R2 R2
R3 R3
R4 R4
RS R5
Ré R6
R7 R7
RS
R
R10
R11
R12
R13
R14

R15 (PC) R15 (PC)

CPSR CPSR

‘ SPSR-fig

IRQ
RO
R1

R2
R3

R4

RS
RE

R7
R&

RS
R10

R11
R12

R13-irq
R14-irq

R15 (PC)

CPSR

. SPSR-irq

Carnegie Mellon University

Embedded Real-Time Systems

IRQ and FIQ ISR Handling

IRQ Handling FIQ Handling
When an IRQ occurs, the processor When an FIQ occurs, the processor
— Copies cpsrinto spsr_irq - Copies cpsr into spsr_fiq
— Sets appropriate cpsr bits - Sets appropriate cpsr bits
* Sets mode field bits to 10010 e Sets mode field bits to 10001
* Disables further IRQs e Disables further IRQs and FIQs
— Maps in appropriate banked registers - Maps in appropriate banked registers
— Stores the address of “next instruction +4” in Ir_irq - Stores the “next instruction + 4" in Ir_fiq
— Sets pc to vector address 0x00000018 - Sets pc to vector address 0x0000001c0
To return, exception handler needs to: To return, exception handler needs to:
— Restore cpsr from spsr_irq - Restore cpsr from spsr_fiq
— Restore pc from Ir_irq - Restore pc from Ir_fig
— Return to user mode - Return to user mode

(9' Ef\(jt(rﬁaﬁgé%én | ﬁmé Carnegie Mellon University

Interrupt Controller

{

Embedded Real-Time Systems

22

- Timers
Interrupt ——
Controller— Serial Port

—— SPI

IRQ
ARM
Electrical & Computer
ENGINEERlNG

Carnegie Mellon University

Embedded Real-Time Systems

Jumping to the Interrupt Handler

= Non-vectored

= Processor jumps to the same location irrespective of the kind of
interrupt

» Hardware simplification
= Vectored
= Device supplies processor with address of interrupt service routine

= Interrupt handler reads the address of the interrupt service routine
from a special bus

= Why the different methods?
» |f multiple devices uses the same interrupt the processor must poll
each device to determine which device interrupted the processor
» This can be time-consuming if there is a lot of devices

* |n a vectored system, the processor would just take the address
from the device (which dumps the interrupt vector onto a special
bus).

(9’ Eﬁt&iﬁgﬁ%ﬁ ﬁteGr Carnegie Mellon University

Embedded Real-Time Systems

Jumping to the Interrupt Handler

= Auto-vectored

= Multiple CPU interrupt inputs for interrupts of different priority
level

= ARM has two — FIQ and IRQ
= Other processors, like 68000, SPARC, may have 8 or more

= Processor-determines address of interrupt service routine based
on type of interrupt

= For ARM, pseudo-auto vectored IRQs and FIQs is implemented
using an on-chip interrupt controller

'(9' Eﬁt&iaﬁgé%ﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Types of Interrupt Handlers

= Non-nested interrupt handler (simplest possible)
= Services individual interrupts sequentially, one interrupt at a time

= Nested interrupt handler
= Handles multiple interrupts without priority assignment

» Prioritized (re-entrant) interrupt handler
» Handles multiple interrupts that can be prioritized

'(9' Ef\clt&ﬁl\ﬁg%ﬁn | [{itf;r Carnegie Mellon University

Embedded Real-Time Systems

Non-Nested Interrupt Handler

= Does not handle any further interrupts until the current interrupt is
serviced and control returns to the interrupted task

* Not suitable for embedded systems where interrupts have varying
priorities and where interrupt latency matters

= However, relatively easy to implement and debug

» Inside the ISR (after the processor has disabled interrupts, copied
cpsr into spsr mode, set the etc.)

= Save context — subset of the current processor mode’ s nonbanked
registers

= Not necessary to save the spsr mode —why?

= |SR identifies the external interrupt source — how?
= Service the interrupt source and reset the interrupt
= Restore context

= Restore cpsr and pc

{9’ Eﬁt&ﬁl\ﬁfﬁn | ﬁteGr Carnegie Mellon University

Embedded Real-Time Systems

Nested Interrupt Handler

= Allows for another interrupt to occur within the currently executing 27
handler

= By re-enabling interrupts at a safe point before ISR finishes servicing
the current interrupt

= Care needs to be taken in the implementation
» Protect context saving/restoration from interruption
= Check stack
» |ncreases code complexity, but improves interrupt latency

= Does not distinguish between high and low priority interrupts
= Time taken to service an interrupt can be high for high-priority interrupts

(0' Eﬁt(rl,cﬁl\jgé%ﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Prioritized (Re-entrant) Interrupt Handler

= Allows for higher-priority interrupts to occur within the currently 08
executing handler
= By re-enabling higher-priority interrupts within the handler
= By disabling all interrupts of lower priority within the handler

= Same care needs to be taken in the implementation
= Protect context saving/restoration from interruption, check stack overflow

» Does distinguish between high and low priority interrupts
= |nterrupt latency can be better for high-priority interrupts

{9’ Eﬁt&ﬁ'\%fﬁ“ NG Carnegie Mellon University

Embedded Real-Time Systems

Interrupts and Stacks

Stacks are important in interrupt handling
= Especially in handling nested interrupts
= Who sets up the IRQ and FIQ stacks and when?

29

= Stack size depends on the type of ISR
= Nested ISRs require more memory space
= Stack grows in size with the number of nested interrupts

» (Good stack design avoids stack overflow (where stack extends beyond
its allocated memory) — two common methods

= Memory protection
= (Call stack-check function at the start of each routine

= |mportant in embedded systems to know the stack size ahead of time
(as a part of the designing the application) — why?

(D' Eﬁt&ﬁl\ﬁfﬁn | |\ujte(;r Carnegie Mellon University

Embedded Real-Time Systems

Resource Sharing Across Interrupts

* Interrupts can occur asynchronously 30

= Access to shared resources and global variables must be handled in
a way that does not corrupt the program

= Normally done by masking interrupts before accessing shared data
and unmasking interrupts (if needed) afterwards

= Clearly, when interrupt-masking occurs, interrupt latency will be higher

* Up next — start with a simple keyboard ISR and then understand
= What can happen when the ISR takes a while to execute
= How do we improve its interrupt latency
= What can go wrong

(0’ Ef\(jt&iaﬁgé%ﬁn | ﬁted Carnegie Mellon University

Embedded Real-Time Systems

Starting With a Simple Example

» Keyboard command processing 31
The “B” key is pressed by the user What happens if another
| key is pressed or if a timer
The “keyboard” interrupts the processor interrupt occurs?
|
Jump to keyboard ISR (non-nested)
|

keyboard ISR() {
ch < Read keyboard input régister
switch (ch) {
case ‘b : startApp(); break;

How long does this
processing take?

case x—_doSomeProcessing(); break;

} return from ISR

(9' Ef\lct&iaﬁgé%hn NG Carnegie Mellon University

Embedded Real-Time Systems

Improving Interrupt Latency

= Add a buffer (in software or hardware) for input characters. 32

» This decouples the time for processing from the time between
keystrokes, and provides a computable upper bound on the time
required to service a keyboard interrupt

= Commands stored in the input buffer can be processed in the
user/application code

Stores the input and then quickly

A key is pressed by the user returns to the “main program”
l (process)
The “keyboard” interrupts the processor Application Code
Jump to keyboard ISR while (!quit) {
| if (*input buffer) {
keyboard ISR() { processCommand (*1nput buffer);
*input puffer++ = ch; removeCommand (input buffer) ;

return from ISR

(9’ Eﬁt&ﬁaﬁ‘gﬁ%ﬁ“ NG Carnegie Mellon University

Embedded Real-Time Systems

What Can Go Wrong? Buffer Processing

33

keyboard ISR() {
ch < Read ACIA input register
*input buffer++ = ch;

return from ISR application code

while (!quit) {
1f (*input buffer) {
processCommand (*input buffer);

What happens if another command ,
removeCommand (i1nput buffer);

is entered as you remove one from /}'
the inputBuffer? }

(9' Ef\lct&iaﬁgé%hn NG Carnegie Mellon University

Embedded Real-Time Systems

Another Concurrency Problem

= An application uses the serial port to print characters on the terminal
emulator (Hyper Terminal)
= The application calls a function PrintStr to print characters to the terminal

» |nthe function PrintStr, the characters to be printed are copied into an output
buffer (use of output buffer to reduce interrupt latency)

» |n the serial port ISR

= See if there is any data to be printed (whether there are new characters in the
output buffer)

= Copy data from the output buffer to the transmit holding register of the UART

= The (new app) display also needs to print the current time on the
terminal — a timer is used (in interrupt mode) to keep track of time

= |n the timer ISR

= Compute current time
= Call printsStr to print current time on the terminal emulator

'(9' Ef\clt&ﬁl\ﬁg%ﬁn | [{itf;r Carnegie Mellon University

Embedded Real-Time Systems

Another Example:
Buffer for Printing Chars to Screen

35

PrintStr (*string) PrintStr (this i1s a line);

char *string;
{
while (*string) {
outputBuffer[tail++] = *string++;

}
| T|H[I]S] | 1] 9,

/

tail points here and a timer interrupt occurs

Jump to timer ISR

timer ISR() {
clockTicks++;
PrintStr (convert (clockTicks)) ;

}

TIHI IS I S| 2 |: |30

(9' Ef\lct&iaﬁgé%hn NG Carnegie Mellon University

Embedded Real-Time Systems

Critical Sections of Code

= Pieces of code that must appear as an atomic action

36

printStr (*string)

char *string; printStr (“this is a line’);

{
; T H| I| S I S

MaskInterrupts () ;
while (*string) {
outputBuffer[tail++]= *string++;

}

UnmaskInterrupts () ;
) tail points here and a timer interrupt occurs

Jump to timer ISR happens after printStr () completes Atomic action

action that

timer TSR () “appears”
clockTicks++; to take place in a
printStr (convert (clockTicks)) ; single indivisible

} operation

T H|II|S 1S5 A L |1 [N E

(9' Ef\lCt(rl,ﬁl\jgé%ﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Shared-Data Problems

= Previous examples show what can go wrong when data is shared 37
between ISRs and application tasks

= Very hard to find, and debug such concurrency problems (if they
exist)
= Problem may not happen every time the code runs

= In the previous example, you may not have noticed the problem if
the timer interrupt did not occur in the PrintStr function

= |[essons learned
= Keep the ISRs short

= Analyze your code carefully, if any data is shared between ISRs and
application code

(9' Ef\lCt(rl,ﬁl\jgé%ﬁn NG Carnegie Mellon University

Embedded Real-Time Systems

Summary

Timers

Interrupts
= Interrupt Latency
» |nterrupt Handlers

Concurrency issues with interrupt handlers

Next Lecture: ARM Optimization (NOT SWI and the Kernel)

(0' Ef\(jt&iaﬁgé%ﬁn | ﬁmér 38 Carnegie Mellon University

