
Compositional Performance Analysis in Python
with pyCPA

Jonas Diemer, Philip Axer, Rolf Ernst
Institute of Computer and Network Engineering

Technische Universität Braunschweig
38106 Braunschweig, Germany

{diemer|axer|ernst}@ida.ing.tu-bs.de

Abstract—The timing behavior of current and future embed-
ded and distributed systems becomes increasingly complex. At the
same time, many application fields such as safety-critical systems
require a verification of worst-case timing behavior. Deriving
sound guarantees is a complex task, which can be solved by
Compositional Performance Analysis. This approach formally
computes worst-case timing scenarios on each component of the
system and derives end-to-end system timing from these local
analyses. In this paper, we present pyCPA, an open-source imple-
mentation of the Compositional Performance Analysis approach.
Targeted towards academia, pyCPA offers features such as
support for the most common real-time schedulers, path analysis
for communicating tasks, import and export functionality, and
different visualizations. Thus, pyCPA is a valuable contribution
to the research domain.

I. INTRODUCTION

Embedded applications such as complex, distributed
control-loops and safety-critical sensor-actuator interactions
are subject to hard real-time constraints where it must be
guaranteed that certain functions will finish before their dead-
line. In most cases, it is not straightforward to show that
all timing requirements are satisfied under all circumstances.
Research in the field of real-time performance analysis and
worst-case execution time analysis provided various formal
approaches such as compositional performance analysis (CPA)
[1] to solve this problem. CPA breaks down the analysis
complexity of large systems into separate local component
analyses and provides a way to integrate local performance
analysis techniques into a system-level analysis.

This papaer presents pyCPA1, an easy-to-understand and
easy-to-extend Python implementation of CPA. To our knowl-
edge, pyCPA is the only free (as in speech) implementation of
the CPA approach. pyCPA targets academic use-cases such as
lectures in real-time education, research of further extensions
of CPA, or simple reference benchmarks for novel analysis
methodologies. To ease interaction with other toolkits, pyCPA
offers support for integration through file-based I/O with other
related tools such as SMFF [2], SymTA/S [1] and MPA [3].

The philosophy of pyCPA is to include only a baseline
implementation of research relevant algorithms (e.g. analysis
of fixed-priority schedulers) without puzzling or distracting
add-ons to keep the package as simple and handy as possible.
Thus, contrary to commercial solutions such as SymTA/S,

1http://code.google.com/p/pycpa

pyCPA does not include any industrial scheduling protocols
such as CAN, Flexray, OSEK, and others. Nevertheless, py-
CPA is built in a modular fashion and can easily be extended
to support such protocols, too. pyCPA is not aimed for
maximum performance, and it is not overly fine-tuned to keep
the implementation simple and comprehensible. Only obvious
performance tweaks are included.

The remainder of the paper is organized as follows: In
Section II, we give an overview of real-time analysis ap-
proaches and corresponding analysis tools. Then, in Section
III we elaborate on the system model as used in CPA and
how it is implemented in pyCPA. After the formal foundation
of CPA is introduced in Section IV, we sketch the workflow of
pyCPA by analyzing an exemplary architecture in Section V.
The integration of pyCPA with other toolkits such as SMFF
is presented in Section VI . Finally, we conclude the paper in
Section VII.

II. RELATED WORK

There are different approaches for formal analysis of worst-
case timing behavior on system level. Exact approaches like
Uppaal [7] use model checking techniques to derive the worst-
case timing of a system. This can be very expensive in terms
of run-time and memory for larger (realistic) systems. Holistic
approaches such as [8] have similar issues. Compositional
approaches like Real-Time-Calculus [6] and Compositional
Performance Analysis (CPA) [1] solve this by decomposing
the analysis of the system at component level. They use
abstract event models to describe the interaction of com-
ponents in the worst- and best-case. Event models describe
the maximum and minimum events arrivals for specific time
intervals rather than exact instances in time. This can lead to
pessimism in the analysis, but avoids the state space explosion
from which holistic approaches suffer.

TABLE I
TOOLS FOR WORST-CASE TIMING ANALYSIS

Tool Approach Commercial Free Open-Source
MAST [4] no yes yes
Uppaal [5] yes yes no
MPA Toolbox [6] no yes yes
SymTA/S [1] yes no no
pyCPA [1] no yes yes

Task

name : String

wcet : Integer

bcet : Integer

sched_param : Integer

deadline : Integer

bind_resource(r : Resource)

get_resource_interferers() : list

Resource

name : String

bind_task(t : Task)

1 resource

1..*

tasks

EventModel

delta_min : Function

delta_plus : Function

eta_min() : Integer

eta_plus() : Integer

0..1

prev_task

0..*

next_tasks

SystemModel

bind_resource(r : Resource)

bind_path(p : Path)

bind_junction(j : Junction)

Path

name : String

Path(tasks : list)

0..*

1..*

tasks

1

1..*

1

1..*

1

1..*

1 1

in_event_model

Scheduler

b_plus(t : Task,q : Integer) : Integer

b_min(t : Task,q : Integer) : Integer

stop(t : Task,q : Integer,w : Integer) : Bool

Junction

name : String

Junction(name : String,mode : String)

0..1 prev_task

1..*next_tasks

1 scheduler

ConstraintManager

check_violations(task_results : dict)

add_backlog_constraint(t : Task,s : Integer)

add_load_constraint(r : Resource,l : Integer)

add_path_constraint(p : Path,d : Integer,n : Integer)

add_wcrt_constraint(t : Task,d : Integer)

1

1 in_event_model
0..*

next_tasks

1..* prev_tasks

1 1

Fig. 1. System model of Compositional Performance Analysis

Most of the proposed approaches have been implemented in
software tools, which are summarized in Table I. With pyCPA,
we present a toolkit which implements the CPA approach
which is also used in the commercially available SymTA/S
tool. pyCPA is publicly available in source-code, like the MPA
Toolbox implementing Real-Time-Calculus.

III. THE CPA SYSTEM MODEL

In CPA, systems are modeled by sets of resources and
tasks (see Figure 1). A resource provides processing time
which is consumed by the tasks mapped to it. The mapping
of tasks to resources is represented by references between
tasks and a resource. Contention for resources with multiple
tasks is resolved according to a scheduling policy (e.g. static
priority preemptive), for which each task may include a
scheduling parameter. The scheduling behavior is specified
within a scheduler class which defines window functions
(b_min() and b_plus()) used in scheduling analysis [9],
see Section IV.

The execution behavior of a task τi is divided into the
following steps: activation, core execution and finally com-
pletion/propagation. After being activated, a task (or job) is
ready to execute and can be scheduled. It is assumed to
require a core execution time in the interval between the
best-case and worst-case execution times [C−i , C

+
i]. Between

activation and completion, tasks may be interrupted by other
tasks running on the same resource, which can be obtained
via get_resource_interferers().

A distributed application consisting of multiple communi-
cating tasks is implicitly described by a directed graph (via the
next_tasks and prev_task attributes) in which nodes
are tasks and edges represent functional data dependencies.
After a task’s execution is completed, the task activates its
dependent tasks (propagation). The application graph consists

0 30 60 90 120 150 180 210 240 270
∆t

0

1

2

3

4

5

6

7

n

η(∆t)

η−(∆t)

η+(∆t)

0 1 2 3 4 5 6 7
n

0

50

100

150

200

250

∆
t

δ(n)

δ−(n)

δ+(n)

Fig. 2. Event model for a periodic activation with a period of P = 30 and
a jitter of J = 60

of task chains, which are called paths in pyCPA. Here,
forks are possible, i.e. one task can activate multiple other
tasks (forming multiple paths). The opposite, i.e. a join, is
represented by a junction, and requires the definition of a
semantic or “mode”. There are two common join-semantics as
discussed in [1]: For an OR-join any incoming event produces
one outgoing event, and for an AND-join, an outgoing event
is produced once events are available on all incoming edges.

Also part of the model are optional constraints, which can
be used to define deadlines for tasks and path response times,
limitations on the load of resources, or activation backlog
(which usually translates to buffer requirements). In pyCPA
all elements which model the system architecture (i.e tasks,
resources, event models, junctions and paths) are distinct
classes, as shown in Figure 1. For easy navigation, all classes
are (redundantly) cross-referenced, e.g. resources keep a list
of all mapped tasks and each task keeps a reference to its
resource.

As discussed above, task activation and completion denote
specific events, which are chained for dependent tasks (i.e.
the completion event of one task is the activation event of
its dependent tasks). Events can also originate from external
sources, such as a timer. The arrivals of activation events of
a task τi are modeled by minimum / maximum arrival curves
η−i (∆t) / η+i (∆t), which return a lower / upper bound on the
number of events that can arrive within any half-open time
window [t, t+ ∆t) [10]. These functions have pseudo-inverse
counterparts, the so-called maximum / minimum distance
functions δ+i (n) / δ−i (n), which return an upper / lower bound
on the time interval between the first and the last event of
any sequence of n event arrivals. Such event models cover all
possible event arrivals of a specific event source as opposed
to a specific trace of events.

For compact representation, standard event models in [10]
use three parameters, event model period P , event model jitter
J and a dmin which specifies the minimum distance between
successive events in case the jitter is larger than the period.

R1

T11 T12P=30 J=60

Fig. 3. A very simple pyCPA system model: two communicating tasks
stimulated by one event model are mapped to one resource

The δ-functions for such an event model representation are as
follows:

0 ≤ n < 2 : δ+(n) = δ−(n) = 0

n ≥ 2 : δ+(n) = (n− 1)P + J

δ−(n) = max((n− 1)dmin, (n− 1)P − J)

(1)

Figure 2 shows the arrival curves and minimum distance
functions for a periodic task activation with a period of
P = 30, and a jitter of J = 60. In pyCPA, event models are
internally described by their δ-functions, which are represented
as actual function references. There are generator functions
for typical event models, such as periodic with jitter or
periodic bursts. The η-functions, which are needed during
some analysis steps, are derived directly from the δ-functions
by using the following transformation:

n = 0 : η+(∆t) = 0

n ≥ 1 : η+(∆t) = max
n≥1,n∈N

{n | δ−(n) < ∆t}

η−(∆t) = min
n≥1,n∈N

{n | δ+(n+ 2) > ∆t} (2)

To speed up the event-model transformation, pyCPA lever-
ages the fact that δ-functions are monotonous and implements
a binary search. For further efficiency, δ-functions are cached,
as they are referenced often with the same values (e.g. during
event propagation, see next section). Note that although the
CPA system model was conceived to analyze tasks executing
on processor resources, it can also be used to for different
systems such as Ethernet networks as presented in [11], [12]
as well as CAN-buses as shown in [13]. Due to the CPA
approach, pyCPA performs very fast, with the results being
available within seconds. Even for a large system with over
1700 tasks on over 500 resources and an average load of over
90%, the analysis required only a couple of minutes.

A. Design Entry

Although pyCPA does not provide a GUI, there are rich
ways to enter a system description. The easiest way is to
instantiate the corresponding CPA objects directly in Python.
As an example, consider the system model shown in Figure
3, which represents a small system with one resource R1 and
two dependent tasks T11 and T12. Listing 1 demonstrates how
this system can be represented in pyCPA. At first, a system
object is instantiated which stores further objects. A resource

1 s = model.System()

3 r1 = s.bind_resource(model.Resource("R1",
4 schedulers.SPPScheduler()))

6 t11 = r1.bind_task(model.Task("T11", wcet=5, bcet=5,
7 scheduling_parameter=1))
8 t12 = r1.bind_task(model.Task("T12", wcet=9, bcet=1,
9 scheduling_parameter=2))

11 t11.link_dependent_task(t12)

13 t11.in_event_model = model.EventModel(P=30, J=60)

15 p1 = s.add_path("P1", [t11, t12])

17 s.constraints.add_backlog_constraint(t11, 5)
18 s.constraints.add_wcrt_constraint(t12, 90)

Listing 1. CPA system model directly instantiated in Python

named R1 is added to the system, for which a scheduling
policy is defined by instantiating an SPP scheduler object. The
scheduler object encapsulates scheduling specific functions, as
discussed in Section IV. Both tasks are created and mapped
to resource R1, worst- and best-case timing as well as the
scheduling parameter (in this case a priority) are defined.
Then, both tasks are linked according to the application graph
and an input event model with a period of P = 30 and a
jitter of J = 60 is specified for the first task. Since we are
interested in the end-to-end latency from T11 to T12, we also
define a path which includes the corresponding tasks. During
runtime, pyCPA checks if the entered system description is
well-formed e.g. there are no dangling tasks and no functional
cycles without further external stimuli exist.

Some of the created tasks may exhibit constraints which
either emerge from the underlying physical architecture (e.g.
buffer size constraints) or non-functional timing constaints
of the modeled application such as deadlines. In pyCPA,
constraints are handled by a constraint manager (cf. Figure
1) which is attached to the system object. During analysis,
the pyCPA kernel checks if any constraints are violated
and eventually stops the analysis with an error message. As
discussed, the constraint manager supports a set of constraints,
but additional constraint semantics (e.g. reliability, mode-
change latencies, slack) can be added by deriving from the
pyCPA constraint manager class. In our simple example we
constrain the available buffer size for the input queue of task
T11 to 5 and add a deadline for task T12 of 90 time units.

Since one major focus of pyCPA is the interoperability
with other timing toolkits, it offers a set of import and export
libraries, which either convert a system description of another
tool to the pyCPA model or vice versa. Specifically, pyCPA
provides importers for SMFF [2] and SymTA/S 1.4 [1] as well
as an exporter for MPA [3]. Depending on the complexity of
the model transformation, additional import and export filters
are quite simple to implement. Listing 2 illustrates the import
of a SymTA/S 1.4 model.

1 loader = symload.SymtaLoader14()
2 s = loader.parse("symta14_test.xml")

Listing 2. Importing a SymTA/S 1.4 system model to pyCPA

IV. COMPOSITIONAL PERFORMANCE ANALYSIS

Once the system model is formulated, we are interested
in its timing properties. A common metric is the worst-case
response time, which is the largest time from activation of a
task to its completion. Obviously, it is not straight forward
to analyze timing for communicating tasks, since some event
models are not know a priori (e.g. the input event model of
T12 in Figure 3). Therefore, CPA uses an hierarchical iterative
approach which is illustrated in Figure 4 to analyze the timing
of such systems.

The general idea of the algorithm is as follows: At first,
input event models for all tasks are initialized to one optimistic
starting point. Naturally, the event model at the start of a path
is an optimistic event model for all tasks on the path. Note,
that later during the analysis, this optimism is resolved. Then,
a local (component-level) analysis is performed for each task.
After all local analyses have been performed, it is possible
to derive output event models for all previously analyzed
tasks. In a second step, newly derived output event models
are propagated to all dependent tasks. If the output event
model of a task has changed compared to the previous iteration
step all tasks which are functionally or non-functionally (i.e.
through resource sharing) influenced by this event model are
re-analyzed.

This way, the two steps (local analysis and propagation) are
alternated until either all event models remain stable or any
constraint that might be specified (e.g. task deadline or path
latency) is violated.

Local
Scheduling Analysis

Input Event Models

Local
Scheduling Analysis

Local
Scheduling Analysis

Output Event Models

Convergence or
Non-Schedulability ?

No

Environment Model

Terminate

Event Model
Propagation

System Model

Fig. 4. The system analysis loop

1 class SPPScheduler(Scheduler):
2 def b_plus(self, task, q):
3 w = q * task.wcet
4 while True:
5 s = 0
6 for ti in task.get_resource_interferers():
7 if ti.scheduling_parameter <= \
8 task.scheduling_parameter:
9 s += ti.wcet * \

10 ti.in_event_model.eta_plus(w)
11 w_new = q * task.wcet + s
12 if w == w_new:
13 return w
14 w = w_new

16 def stop(self, task, q, w):
17 if task.in_event_model.delta_min(q + 1) >= w:
18 return True
19 return False

Listing 3. Simplified SPP scheduler class implementation

A. Local Analysis

The local analysis is based on a busy window approach as
presented by Lehoczky in [14]. For this, we compute a so-
called maximum q-event busy-time B+

i (q) which describes
an upper bound of the amount of time a resource requires to
service q activations of task τi, assuming that all q activations
arrive “sufficiently early” (see [9]). A sufficient condition for
the “sufficiently early” arrival of the q-th event is the arrival
prior to the completion of its preceding event (the (q−1)-event
busy-time). For this computation, a worst-case arrival of all
interfering tasks is assumed. For a static-priority-preemptive
(SPP) scheduler, the maximum busy-time can be computed as
follows [14]:

B+
i (q) = q · C+

i +
∑

j∈hp(i)

η+j (B+
i (q)) · C+

j (3)

where C+
i is the worst-case execution time of task τi, hp(i)

is the set of tasks with a higher-priority than task τi. Note that
in this equation, B+

i (q) appears on both sides, resulting in
an integer fixed-point problem. It can be solved by iteration,
starting from B+

i (q) = q · C+
i .

To find the worst-case response-time, only the first q+i
activations need to be considered, where q+i is defined by a
scheduler-dependent stopping condition. For SPP, the stopping
condition is that all own and higher-priority load must be
serviced. Hence:

q+i = min{q ∈ N+ | δ−i (q + 1) ≤ B+
i (q)} (4)

Note that in pyCPA, the satisfaction of the stopping condition
is evaluated during the search for the worst-case response-time
for every q without the explicit computation of q+i .

In pyCPA, this analysis is implemented in a modular way.
As shown in the example from Listing 1, a scheduler-specific
class object must be given for each resource. This class
contains functions such as B+

i (q) and a stopping condition
which evaluates whether the next activation has to be con-
sidered (q + 1 ≤ q+) or whether the local analysis should
terminate (q + 1 > q+). For an SPP scheduler a simplified

1 results = analysis.analyze_system(s)

3 for t in [t11, t12]:
4 print("%s: wcrt=%d" % (t.name, results[t].wcrt))

6 bcl, wcl = path_analysis.end_to_end_latency(p1, 5)
7 print("Path latency: [%d,%d]"%(bcl,wcl)")

Listing 4. Analysis of a CPA system model

implementation is shown in Listing 3. Here, the busy-time
function and the stopping condition are straightforward imple-
mentations of Equation 3 and Equation 4. pyCPA comes with
scheduler implementations for the most common scheduling
policies used in the embedded domain (e.g. static priority
preemptive and non-preemptive, round-robin, TDMA, and
earliest-deadline-first).

B. Global Analysis

The global analysis iteration is performed on task-level, i.e.
the event-model propagation is done after the analysis of each
task. For this, pyCPA maintains a set of dirty tasks to which
all dependent tasks are added after the output event model of
a task changes. In order to avoid unnecessary re-analysis of
tasks, pyCPA analyzes tasks with the most dependent tasks
first.

To compute the output event model of a task τi, we first need
to determine its best- and worst-case response times R−i and
R+

i . These can be obtained from the busy windows which were
gathered from the local analysis step. The worst-case response
time can be found among the first q+i busy-windows, whereas
it is a safe assumption, that the best-case response-time equals
the best-case execution time:

R+
i = max

q∈N+ | q≤q+i

(
B+

i (q)− δi(q)
)

(5)

R−i = C−i (6)

The worst-case scheduling jitter Js
i for a task can be

bounded to Js
i = R+

i − R−i . From this, we can compute the
output event model δout,i which adds the scheduling jitter to
the input event model δin,i according to Equation 1.

δ−out,i(n) = max
(
δ−in,i(n)− Js

i , (n− 1)C−i
)

δ+out,i(n) = δ+in,i(n) + Js
i (7)

This way of obtaining an output model is called jitter
propagation in pyCPA. In [15], Schliecker et al. provide a
more sophisticated event-model propagation which constructs
the output event-model by considering the cases of all q+ busy
windows. This busy-window propagation yields tighter results,
and therefore is the default in pyCPA.

V. RUNNING AN ANALYSIS IN PYCPA

Once a pyCPA system model is available, several different
real-time metrics can be derived easily. Listing 4 shows the
necessary steps to analyze the system model which was given
in Listing 1 in Section III. The actual CPA iteration (local

0 5 10 15 20 25 30 35 40 45 50 55
time ∆t

T11

T12
q=1

WCRT=37.0

q=2

WCRT=37.0

q=3

WCRT=37.0

q=4

WCRT=37.0

Fig. 5. Gantt-chart of the worst-case scheduling scenario for task T11

analysis and propagation) as depicted in Figure 4 is performed
in analyze_system(). The analysis results are returned
inside a result object and are available directly after the exe-
cution of analyze_system(). This includes the activation
backlog, which is the largest amount of unprocessed task
activation events, as well the best- and worst-case response-
times. To derive more sophisticated properties of the system,
such as the best- and worst-case end-to-end latency of a path,
is is necessary to call dedicated analysis methods after the
system has been analyzed. In Listing 4, we additionally derive
the best- and worst-case path latency for 5 consecutive events
for path P1.

A. Visualization

Once analysis data is available, the results can be post-
processed and visualized using one of the many existing
Python packages such as matplotlib. Based on this, pyCPA
provides several functions for visualization. The complete
system model can be displayed using PyGraphviz. The system
graph shown in Figure 3 was generated this way. The system
plot is especially useful to visually inspect the entered system
model for larger systems. Also, event models can be plotted
using pyCPA (using matplotlib internally) as the one shown
in Figure 2.

For illustrative purposes, it might be of further interest to
generate one execution trace (Gantt-chart) which leads to the
worst-case response time. For instance, the chart in Figure 5
shows the worst-case response time for task T12 from the
initial example. pyCPA comes with a discrete event simulator
which is built on top of SimPy. To generate the Gantt-chart,
pyCPA simulates the critical instant behavior according to the
specified scheduling policy and stores all preemption- and run-
times of a task. The trace data can then be used to plot the
Gantt-chart as shown in Figure 5 which also highlights the
activation at which the worst-case response time is observed.

VI. INTEROPERABILITY

pyCPA uses a generic system model that is compatible
with that of many other tools. For instance, pyCPA provides
an XML importer for SymTA/S system models. Furthermore,
it can directly read and write system models generated by
the system-models-for-free (SMFF) generator [2]. pyCPA uses

1.0 1.5 2.0 2.5 3.0 3.5
R+ improvement

0.0

0.1

0.2

0.3

0.4

0.5

0.6
re

la
tiv

e
fre

qu
en

cy

Fig. 6. Relative improvement of the busy-window propagation vs. jitter
propagation

Python’s minidom to parse the XML-based SMFF file-
format and converts the SMFF model to the internal pyCPA
representation. After analysis, the SMFF model can be written
including annotated analysis results such as the worst-case
response time as well as output event models.

To show the convenience and actual applicability of such an
interface, we conduct an experiment in which the busy-window
propagation from [15] is compared with the previously pre-
sented jitter propagation technique. Obviously, the results
highly depend on the actual system model. Therefore, we use
SMFF to generate a large set of representative random systems
consisting of up to 4 resources and 3 paths with 4 tasks which
lead to a resource load of up to 0.8. Actual mapping and
scheduling parameters are randomized according to a heuristic
implemented in SMFF. We have generated 500 systems with
SMFF which were analyzed with pyCPA to derive the rela-
tive improvement of the busy-window propagation over jitter
propagation. Systems, which were not feasible (i.e. WCRT
larger than ten periods), were discarded. Figure 6 shows the
distribution of this improvement. As expected, busy-window
propgation yields a up to 3 times better result compared to
jitter propagation. The analysis runtime for jitter and busy-
window where approximately the same with about 10 ms per
analyzed system. All experiments can be directly carried out
in Python which has the immediate advantage that results can
be post-processed and directly plotted. Thus experiments are
self-contained and can be easily reproduced later.

It is also possible to export the pyCPA system model to
other file-formats. This is useful to compare analysis results
with other frameworks. For this purpose, pyCPA includes a
simple exporter which directly outputs a Matlab description of
the system to be used with the Modular Performance Analysis
(MPA) framework. In our experiments, the analysis results for
static-priority systems were identical with pyCPA and MPA,
which matches our expectations.

VII. CONCLUSION

In this paper, we have presented pyCPA, a Python-based
framework for Compositional Performance Analysis. It can
be used to derive worst-case timing of complex embedded

and distributed real-time systems. We have presented the basic
architecture of pyCPA which is very easy-to-use as we have
demonstrated in this paper by a small example. Furthermore,
pyCPA is open-source and has a modular architecture, so it
can be extended easily to cover different scheduling policies or
implement advanced analysis algorithms. pyCPA also provides
interfaces to existing tool suites such as the system-model
generator SMFF or the Modular Performance Analysis frame-
work. For these reasons, pyCPA is a valuable contribution
to the research community in the field of timing analysis of
embedded real-time systems.

ACKNOWLEDGMENT

This work has been funded by the “Bundesministerium für
Bildung und Forschung” (BMBF), the “Deutsche Forschungs-
gemeinschaft” (DFG) as part of the priority program ”Depend-
able Embedded Systems” (SPP 1500 - spp1500.itec.kit.edu),
the Advanced Research & Technology for Embedded Intel-
ligence and Systems (ARTEMIS) within the project ’RE-
COMP’, support code 01IS10001A, agreement no. 100202 as
well as Intel Corporation.

REFERENCES

[1] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System Level Performance Analysis–the SymTA/S Approach,” IEE
Proceedings-Computers and Digital Techniques, vol. 152, no. 2, 2005.

[2] M. Neukirchner, S. Stein, and R. Ernst, “SMFF: System Models for
Free,” in 2nd International Workshop on Analysis Tools and Methodolo-
gies for Embedded and Real-time Systems (WATERS), Porto, Portugal,
July 2011.

[3] E. Wandeler, “Modular performance analysis and interface-based design
for embedded real-time systems,” Ph.D. dissertation, Swiss Federal
Institute of Technology Zurich, 2006.

[4] M. Gonzalez Harbour, J. Gutierrez Garcia, J. Palencia Gutierrez, and
J. Drake Moyano, “MAST: Modeling and analysis suite for real time
applications,” in Real-Time Systems, 13th Euromicro Conference on,
2001., 2001, pp. 125 –134.

[5] R. Alur and D. Dill, “Automata for modeling real-time systems,”
Automata, languages and programming, pp. 322–335, 1990.

[6] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS, vol. 4, 2000.

[7] K. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 1, no. 1,
pp. 134–152, 1997.

[8] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and microprogram-
ming, vol. 40, no. 2-3, 1994.

[9] S. Schliecker, “Performance analysis of multiprocessor real-time systems
with shared resources,” Dissertation, Technische Universität Braun-
schweig, 2011, submitted 2010.

[10] K. Richter, “Compositional scheduling analysis using standard event
models,” Ph.D. dissertation, TU Braunschweig, 2005.

[11] J. Rox and R. Ernst, “Formal Timing Analysis of Full Duplex Switched
Based Ethernet Network Architectures,” in SAE World Congress, vol.
System Level Architecture Design Tools and Methods (AE318). SAE
International, Apr 2010.

[12] J. Diemer, J. Rox, and R. Ernst, “Modeling of Ethernet AVB Networks
for Worst-Case Timing Analysis,” in MATHMOD, Austria, 2012.

[13] P. Axer, M. Sebastian, and R. Ernst, “Probabilistic response time
bound for can messages with arbitrary deadlines,” in Proc. of Design,
Automation and Test in Europe, Dresden, Germany, 2012.

[14] J. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of the 11th Real-Time Systems
Symposium, 1990.

[15] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, “Providing Accurate Event
Models for the Analysis of Heterogeneous Multiprocessor Systems,” in
CODES-ISSS, oct 2008.

