
Resource Sharing
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1

Blocking on an Exclusive Resource is Unavoidable

Exclusive resource accessed by waiting
and signalling a binary semaphore

Rk
Sk

Typically, the exclusive resource should not be
shared while a critical section using is in progress

Rk
Rk

Cannot be avoided!

‣ Direct consequence of the

mutual exclusion property

Also, easy to bound using the critical section duration

‣ Like the worst-case completion time , we could also characterize

the worst-case critical section duration of while it uses
C2

τ2 Rk

Unbounded Blocking Due to Priority Inversion
The duration of priority inversion is unbounded

‣ Any intermediate priority task can preempt and indirectly block

‣ If we add the completion time of each intermediate-priority task as a blocking
factor in ’s timing analysis, the resulting system will have a very low utilization. Why?

τ3 τ1

Cintermediate τintermediate
τ1

How to Prevent Unbounded Priority Inversions?

• Key idea …

Terminology • Task set consists of periodic tasks

• Each task is characterized by a period and worst-case completion time

• The tasks cooperate through shared resources

• Each resource is guarded by a distinct binary semaphore

‣ All critical sections using start and end with operations and

• Each task is assigned a fixed base priority (e.g., using RM)

‣ Assumption: priorities are unique and

• Each task also has an effective priority

‣ It is initially set to and can be dynamically updated

• denotes the maximum blocking time task can experience

‣ goes into the fixed-priority response-time analysis (recall from previous lectures)

• denotes any arbitrary critical section of guarded by semaphore

‣ denotes the longest among all these critical sections

‣ denotes the length of this longest critical section

τ = {τ1, τ2, …, τn} n

Ti Ci

m R1, R2, …, Rm

Rk Sk
Rk wait(Sk) signal(Sk)

Pi
P1 > P2 > … > Pn

pi (≥ Pi)
Pi

Bi τi
Bi

zi,k τi Sk
Zi,k

δi,k Zi,k

Non-Preemptive Protocol (NPP)

Observation Blocking caused by the preemption of a running, resource-holding job

‣ E.g., preempted by at time while holding the shared resourceτ3 τ2 t4

Key idea: Disable preemption before acquiring a
shared resource; reenable upon exit of critical section

When a task acquires a resource , its
dynamic priority is raised to the level of the
highest priority, i.e.,

τi Rk

pi(Rk) = max
∀h

{Ph}

Example Priority inversion bounded by critical section length
‣ How can we formally define ’s blocking time bound ?τi Bi

Critical section length

Priority
inversion for τ1

Priority
inversion for τ2

NPP Benefits & Limitations
• Most simple way to prevent unbounded priority inversions

• Can be realized by disabling/reenabling interrupts

‣ Raising task priorities is a useful abstraction but needn’t be implemented in this case

• Limitations

‣ Turning off interrupts risks large interrupt latency

‣ All tasks effected

- Even independent tasks blocked due to priority inversion

What if high-frequency tasks cannot tolerate blocking
even due to a single, long non-preemptive section?

Unbounded priority inversion
NPP bounds the priority inversion

NPP causes unnecessary blocking,
even though bounded

What’s next?

The Priority Inheritance Protocol (PIP)

Protocol Definition
• Unlike NPP, resource holding jobs remain fully preemptive

• Tasks are scheduled based on their effective priorities

‣ For scheduling purposes, ’s priority is considered to be and not

• Suppose task tries to enter a critical section by acquiring resource

‣ Case 1: is already held by a lower-priority task is blocked by

‣ Case 2: is already held by a higher-priority task is interfered by

‣ Case 3: is not held by any task enters the critical section

• For Case 1, inherits ’s effective priority

‣ ’s dynamic priority is updated as

• In general, inherits the highest priority of among all tasks that it blocks

‣ At any point of time,

τi pi Pi

τi Rk
Rk τj ⟹ τi τj

Rk τj ⟹ τi τk

Rk ⟹ τi

τj τi
τj pj = pi

τj
pj(Rk) = max {Pj, max

∀h
{ph |τh is blocked on Rk}}

Example 1Unbounded priority inversion

NPP bounds the priority inversion

Example 2

NPP causes unnecessary blocking,
even though bounded

Example 3: Nested Blocking

Example 4: Transitive Blocking

• No latency penalty for high-priority independent tasks

• Widely used in practice: POSIX’s PTHREAD_PRIO_INHERIT

• Limitations

‣ Chained blocking

‣ Deadlock

PIP Benefits & Limitations

The Priority Ceiling Protocol (PCP)

PCP vs PIP
• The PIP is a reactive locking protocol

‣ It only kicks in when resource contention already exists

• Key PCP insight
‣ Better to prevent problematic scenarios rather than resolve them

• The PCP is an anticipatory locking protocol

‣ Exploits the knowledge of resource needs at design time to avoids excessive blocking at runtime

Key Concepts
• Priority ceilings

‣ Each semaphore is statically assigned a priority ceiling

- priority of the highest-priority task that ever accesses

• Current system ceiling
‣ At any time , a global system ceiling is dynamically computed

- = highest priority ceiling among all semaphores locked at time OR 
 (if no semaphores are locked) sentinel value that is smaller than all task priorities

• Protocol
‣ Task can acquire semaphore at time only if

- Its effective priority OR and “owns” the ceiling resource

- OTHERWISE, it transmits its priority to the task that holds semaphore

Sk Cstatic(Sk)
Cstatic(Sk) = Sk

t Cglobal(t)
Cglobal(t) t

P0

τi Sk t
pi > Cglobal(t) pi = Cglobal(t) τi

τj Sk

Example

Priority Inversion — Does It Matter?

• What really happened on Mars Rover Pathfinder

• https://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

• What the Media Couldn’t Tell You About Mars Pathfinder

• https://people.cs.ksu.edu/~hatcliff/842/Docs/Course-Overview/pathfinder-robotmag.pdf

https://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
https://people.cs.ksu.edu/~hatcliff/842/Docs/Course-Overview/pathfinder-robotmag.pdf

What really happened on Mars Rover Pathfinder?

• But a few days into the mission, not long after Pathfinder started gathering meteorological
data, the spacecraft began experiencing total system resets, each resulting in losses of
data. The press reported these failures in terms such as "software glitches" and "the
computer was trying to do too many things at once”.

• This week at the IEEE Real-Time Systems Symposium I heard a fascinating keynote
address by David Wilner, Chief Technical Officer of Wind River Systems. Wind River makes
VxWorks, the real-time embedded systems kernel that was used in the Mars Pathfinder
mission. In his talk, he explained in detail the actual software problems that caused the
total system resets of the Pathfinder spacecraft, how they were diagnosed, and how they
were solved. I wanted to share his story with each of you.

• VxWorks provides preemptive priority scheduling of threads. Tasks on the Pathfinder
spacecraft were executed as threads with priorities that were assigned in the usual manner
reflecting the relative urgency of these tasks.

What really happened on Mars Rover Pathfinder?

• Pathfinder contained an "information bus", which you can think of as a shared memory area used for passing information
between different components of the spacecraft. A bus management task ran frequently with high priority to move certain
kinds of data in and out of the information bus. Access to the bus was synchronized with mutual exclusion locks (mutexes).

• The meteorological data gathering task ran as an infrequent, low priority thread, and used the information bus to publish its
data. When publishing its data, it would acquire a mutex, do writes to the bus, and release the mutex.

• If an interrupt caused the information bus thread to be scheduled while this mutex was held, and if the information bus thread
then attempted to acquire this same mutex in order to retrieve published data, this would cause it to block on the mutex,
waiting until the meteorological thread released the mutex before it could continue. The spacecraft also contained a
communications task that ran with medium priority.

• Most of the time this combination worked fine. However, very infrequently it was possible for an interrupt to occur that caused
the (medium priority) communications task to be scheduled during the short interval while the (high priority) information bus
thread was blocked waiting for the (low priority) meteorological data thread. In this case, the long-running communications
task, having higher priority than the meteorological task, would prevent it from running, consequently preventing the blocked
information bus task from running. After some time had passed, a watchdog timer would go off, notice that the data bus task
had not been executed for some time, conclude that something had gone drastically wrong, and initiate a total system reset.

• This scenario is a classic case of priority inversion.

What really happened on Mars Rover Pathfinder?

• When created, a VxWorks mutex object accepts a boolean parameter that indicates whether
priority inheritance should be performed by the mutex. The mutex in question had been
initialized with the parameter off; had it been on, the low-priority meteorological thread would
have inherited the priority of the high-priority data bus thread blocked on it while it held the
mutex, causing it be scheduled with higher priority than the medium-priority communications
task, thus preventing the priority inversion. Once diagnosed, it was clear to the JPL engineers
that using priority inheritance would prevent the resets they were seeing.

• VxWorks contains a C language interpreter intended to allow developers to type in C
expressions and functions to be executed on the fly during system debugging. The JPL
engineers fortuitously decided to launch the spacecraft with this feature still enabled. By
coding convention, the initialization parameter for the mutex in question (and those for two
others which could have caused the same problem) were stored in global variables, whose
addresses were in symbol tables also included in the launch software, and available to the C
interpreter. A short C program was uploaded to the spacecraft, which when interpreted,
changed the values of these variables from FALSE to TRUE. No more system resets occurred.

What really happened on Mars Rover Pathfinder?

• Finally, the engineer's initial analysis that "the data bus task executes very frequently and is time-critical --
we shouldn't spend the extra time in it to perform priority inheritance" was exactly wrong. It is precisely in
such time critical and important situations where correctness is essential, even at some additional
performance cost.

• David told us that the JPL engineers later confessed that one or two system resets had occurred in their
months of pre-flight testing. They had never been reproducible or explainable, and so the engineers, in a
very human-nature response of denial, decided that they probably weren't important, using the rationale "it
was probably caused by a hardware glitch”.

• David also said that some of the real heroes of the situation were some people from CMU who had
published a paper he'd heard presented many years ago who first identified the priority inversion problem
and proposed the solution. He apologized for not remembering the precise details of the paper or who
wrote it. Bringing things full circle, it turns out that the three authors of this result were all in the room, and
at the end of the talk were encouraged by the program chair to stand and be acknowledged. They were Lui
Sha, John Lehoczky, and Raj Rajkumar. When was the last time you saw a room of people cheer a group of
computer science theorists for their significant practical contribution to advancing human knowledge? :-) It
was quite a moment.

