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» Tasksett = {1, 7, ..., T,} consists of n periodic tasks

Terminology

o Each task is characterized by a period 7; and worst-case completion time C;

 The tasks cooperate through m shared resources R, R,, ..., R,

 Each resource R} is guarded by a distinct binary semaphore $,

» All critical sections using R, start and end with operations wait($,) and signal(S,)

 Each task is assigned a fixed base priority P; (e.g., using RM)

>~ Assumption: priorities are unique and P; > P, > ... > P,

» Each task also has an effective priority p; ( > P;)

> It is initially set to P; and can be dynamically updated

e B; denotes the maximum blocking time task z; can experience

> B. goes into the fixed-priority response-time analysis (recall from previous lectures)

» Z;; denotes any arbitrary critical section of 7; guarded by semaphore 5,

» Z; denotes the longest among all these critical sections

> 51-,,< denotes the length of this longest critical section Zi,k
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Example of NPP preventing priority inversion.

What’s next?



Protocol Definition

* Unlike NPP, resource holding jobs remain fully preemptive

 Tasks are scheduled based on their effective priorities

> For scheduling purposes, 7;’s priority is considered to be p; and not P,

« Suppose task 7; tries to enter a critical section by acquiring resource R,
» Case 1: R, is already held by a lower-priority task T, =71 Is blocked by T;

» Case 2: R, is already held by a higher-priority task T, =71 s interfered by 7,

» Case 3: R, is not held by any task = 7; enters the critical section

o« For Case 1,7]- inherits 7.’s effective priority

> T-,

'S dynamic priority is updated as p;=D;

« In general, T; iInherits the highest priority of among all tasks that it blocks

. Atany point of time, p/(R;) = max { P, max {p, | 7, is blocked on R, } }
Vh
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Figure 7.5 Example of NPP preventing priority inversion.
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Figure 7.8 Example of Priority Inheritance Protocol.




Properties of PIP [1/5]

A semaphore §, can cause push-

through blocking to task T}, only if S,
IS accessed both by a task with

priority lower than P; and by a task
with priority higher than P..
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Figure 7.8 Example of Priority Inheritance Protocol.




Properties of PIP [2/5]

Iransitive priority inheritance can o
occur only in the presence of S critcal section
nested critical sections. h
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Figure 7.10 Example of transitive priority inheritance.




Properties of PIP [3/5]

If there are [, lower-priority tasks that can block a task t, then t; can be
blocked for at most the duration of ll- critical sections, one for each of the ll-
lower- priority tasks, regardless of the number of semaphores used by ..



Properties of PIP [4/5]

If there are s; distinct semaphores that can block a task t;, then t; can be
blocked for at most the duration of s; critical sections, one for each of the s;
semaphores, regardless of the number of critical sections used by ..



Properties of PIP [5/5]

Under the Priority Inheritance Protocol, a task t; can be blocked for at most the
duration of a; = min(l,, s;) critical sections, where [. is the number of lower-priority
tasks that can block t; and s; is the number of distinct semaphores that can block ..



Computing Blocking Time b5; [1/2]

» A precise evaluation of the blocking factor B; is quite complex because

each critical section of the lower-priority tasks may interfere with 7; via
direct blocking, push-through blocking, or transitive inheritance

o Simplified algorithm

> Assumes no nested critical sections, hence no transitive inheritance



Computing Blocking Time b5; [2/2]

» Semaphores that can directly block 7; and that are shared by the lower-priority task z; are al.";’:’” = 0;N 0;

« Semaphores that can block 7; by push-through and that are shared by the lower-priority task T;are

pt _
0, = Unp>p, 00N O;

« Semaphores that can block 7; either directly or by push-through and that are shared by the lower-priority task T;

_ dir dir __
> 0;; = 0j; U O, = Uh:thP,- oy N 0;

« Longest critical sections used by lower-priority task T; that can block 7; either directly or by push-through is

> Vij = Zj| Ry € 0}

o LlI critical sections that can block z; either directly or by push-through is y; = j:P.<P, Vi.j

. Bl- s given by the largest sum of the lengths of the ; critical sections in y;

> The sum should contain only terms 0,  referring to different tasks and different semaphore



The Priority Ceiling Protocol (PCP)



PCP vs PIP

* The PIP is a reactive locking protocol
> |t only kicks in when resource contention already exists

 Key PCP insight

> Better to prevent problematic scenarios rather than resolve them

 The PCP is an anticipatory locking protocol
> EXxploits the knowledge of resource needs at design time to avoids excessive blocking at runtime



PCP Key Concepts

* Priority ceilings * Protocol
> Each semaphore 3§, is statically assigned a priority ceiling C,,,;.(S;) » Task 7; can acquire semaphore S, at time 7 only if
C.iic(S;) = priority of the highest-priority task that ever accesses S, - Its effective priority p; > Cypp,(f) OR p; = Cypp,(f) @nd 7; “owns” the ceiling resource

- OTHERWISE, it transmits its priority to the task T; that holds semaphore S,
e Current system ceiling

> Atany time ¢, a global system ceiling C,;,,,(?) is dynamically computed  Example

- Cglobal(t) = highest priority ceiling among all semaphores locked at time ¢t OR

(if no semaphores are locked) sentinel value P, that is smaller than all task priorities
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Properties of PCP [1/4]

 PCP prevents transitive blocking
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Figure 7.10 Example of transitive priority inheritance.




Properties of PCP [2/4]

 PCP prevents deadlocks




Properties of PCP [3/4]

» Atask 7; can be blocked for at most the duration of one critical section




Properties of PCP [4/4]

- A critical section z; ; belonging to task 7; and guarded by semaphore 5
can block a task z; only if P; < P;and C,;,5,/(5;) = P;




Computing Blocking Time B,



Schedulability Analysis with
Resource Sharing




Key ldeas

» Schedulability analysis of task ;

> Inflate the computation time C; of by the blocking factor B,

* All exact tests (both necessary and sufficient) become only sufficient
» Blocking conditions are derived in worst-case scenarios that differ for each task and may never occur simultaneously

« Examples
. ¢, C+B .
RM utilization bound Vi =1, ..., n: Z - | - <i(2"" = 1) (for EDF, replace RHS with 1)
h:P,>P; h i
RG-D
_ Response-time analysis Rl.(S) =C;+ B+ 2 ZT C,
h:P,>P, h




