
Resource Sharing
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1

Terminology • Task set consists of periodic tasks

• Each task is characterized by a period and worst-case completion time

• The tasks cooperate through shared resources

• Each resource is guarded by a distinct binary semaphore

‣ All critical sections using start and end with operations and

• Each task is assigned a fixed base priority (e.g., using RM)

‣ Assumption: priorities are unique and

• Each task also has an effective priority

‣ It is initially set to and can be dynamically updated

• denotes the maximum blocking time task can experience

‣ goes into the fixed-priority response-time analysis (recall from previous lectures)

• denotes any arbitrary critical section of guarded by semaphore

‣ denotes the longest among all these critical sections

‣ denotes the length of this longest critical section

τ = {τ1, τ2, …, τn} n

Ti Ci

m R1, R2, …, Rm

Rk Sk
Rk wait(Sk) signal(Sk)

Pi
P1 > P2 > … > Pn

pi (≥ Pi)
Pi

Bi τi
Bi

zi,k τi Sk
Zi,k

δi,k Zi,k

Unbounded priority inversion
NPP bounds the priority inversion

NPP causes unnecessary blocking,
even though bounded

What’s next?

Protocol Definition
• Unlike NPP, resource holding jobs remain fully preemptive

• Tasks are scheduled based on their effective priorities

‣ For scheduling purposes, ’s priority is considered to be and not

• Suppose task tries to enter a critical section by acquiring resource

‣ Case 1: is already held by a lower-priority task is blocked by

‣ Case 2: is already held by a higher-priority task is interfered by

‣ Case 3: is not held by any task enters the critical section

• For Case 1, inherits ’s effective priority

‣ ’s dynamic priority is updated as

• In general, inherits the highest priority of among all tasks that it blocks

‣ At any point of time,

τi pi Pi

τi Rk
Rk τj ⟹ τi τj

Rk τj ⟹ τi τk

Rk ⟹ τi

τj τi
τj pj = pi

τj
pj(Rk) = max {Pj, max

∀h
{ph |τh is blocked on Rk}}

ExampleUnbounded priority inversion

NPP bounds the priority inversion

Properties of PIP [1/5]
A semaphore can cause push-
through blocking to task , only if
is accessed both by a task with
priority lower than and by a task
with priority higher than .

Sk
Ti Sk

Pi
Pi

Properties of PIP [2/5]
Transitive priority inheritance can
occur only in the presence of
nested critical sections.

Properties of PIP [3/5]
If there are lower-priority tasks that can block a task i, then can be
blocked for at most the duration of critical sections, one for each of the

lower- priority tasks, regardless of the number of semaphores used by .

li τi τi
li li

τi

Properties of PIP [4/5]
If there are distinct semaphores that can block a task i, then can be
blocked for at most the duration of critical sections, one for each of the
semaphores, regardless of the number of critical sections used by .

si τi τi
si si

τi

Properties of PIP [5/5]
Under the Priority Inheritance Protocol, a task can be blocked for at most the
duration of critical sections, where is the number of lower-priority
tasks that can block and is the number of distinct semaphores that can block .

τi
αi = min(li, si) li

τi si τi

Computing Blocking Time [1/2]Bi
• A precise evaluation of the blocking factor is quite complex because

each critical section of the lower-priority tasks may interfere with via
direct blocking, push-through blocking, or transitive inheritance

• Simplified algorithm

‣ Assumes no nested critical sections, hence no transitive inheritance

Bi
τi

Computing Blocking Time [2/2]Bi
• Semaphores that can directly block and that are shared by the lower-priority task are

• Semaphores that can block by push-through and that are shared by the lower-priority task are

• Semaphores that can block either directly or by push-through and that are shared by the lower-priority task

‣

• Longest critical sections used by lower-priority task that can block either directly or by push-through is

‣

• Lll critical sections that can block either directly or by push-through is

• is given by the largest sum of the lengths of the critical sections in

‣ The sum should contain only terms referring to different tasks and different semaphore

τi τj σdir
i,j = σi ∩ σj

τi τj
σpt

i,j = ∪h:Ph>Pi
σh ∩ σj

τi τj
σi,j = σdir

i,j ∪ σdir
i,j = ∪h:Ph≥Pi

σh ∩ σj

τj τi
γi,j = {Zj,k |Rk ∈ σi,j}

τi γi = ∪j:Pj<Pi
γi,j

Bi αi γi
δi,k

The Priority Ceiling Protocol (PCP)

PCP vs PIP
• The PIP is a reactive locking protocol

‣ It only kicks in when resource contention already exists

• Key PCP insight
‣ Better to prevent problematic scenarios rather than resolve them

• The PCP is an anticipatory locking protocol

‣ Exploits the knowledge of resource needs at design time to avoids excessive blocking at runtime

PCP Key Concepts
• Priority ceilings

‣ Each semaphore is statically assigned a priority ceiling

- priority of the highest-priority task that ever accesses

• Current system ceiling
‣ At any time , a global system ceiling is dynamically computed

- = highest priority ceiling among all semaphores locked at time OR 
 (if no semaphores are locked) sentinel value that is smaller than all task priorities

Sk Cstatic(Sk)
Cstatic(Sk) = Sk

t Cglobal(t)
Cglobal(t) t

P0

• Protocol
‣ Task can acquire semaphore at time only if

- Its effective priority OR and “owns” the ceiling resource

- OTHERWISE, it transmits its priority to the task that holds semaphore

• Example

τi Sk t
pi > Cglobal(t) pi = Cglobal(t) τi

τj Sk

Properties of PCP [1/4]
• PCP prevents transitive blocking

Properties of PCP [2/4]
• PCP prevents deadlocks

Properties of PCP [3/4]
• A task can be blocked for at most the duration of one critical sectionτi

Properties of PCP [4/4]
• A critical section belonging to task and guarded by semaphore

can block a task only if and
zi,k τj Sk
τi Pj < Pi Cglobal(Sk) ≥ Pi

Computing Blocking Time Bi

Schedulability Analysis with
Resource Sharing

• Schedulability analysis of task

‣ Inflate the computation time of by the blocking factor

• All exact tests (both necessary and sufficient) become only sufficient
‣ Blocking conditions are derived in worst-case scenarios that differ for each task and may never occur simultaneously

• Examples

‣ RM utilization bound (for EDF, replace RHS with 1)

‣ Response-time analysis

τi
Ci Bi

∀i = 1, …, n : ∑
h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
≤ i(21/i − 1)

R(s)
i = Ci + Bi + ∑

h:Ph>Pi
⌈

R(s−1)
i

Th ⌉ Ch

Key Ideas

