
WCET Analysis: High-Level Overview
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1

Worst&Case*Execu/on*Time*Analysis*(WCET)
Howtodetermine$?

WCET%analysis:"given"a"hardware'pla*orm"and"the"implementa0on'
of'a'task,"for"at'most'how'long"will"a"single"job"execute"(in"isola9on)?

Schedulability-analysis:"given"mul$ple'tasks"and"the"WCET'for'each'
task,"is"it"possible"to"host"them"on"the"same"hardware"pla5orm?

Ambiguous)terminology:)“2ming)analysis”)can)refer)to)either)or)
both)types)of)analyses.

©"2014"B."Brandenburg"(MPI5SWS) 2

Ci

Execu&on)Time)HistogramWil08

Worst-Case Execution Time Problem · 3

!"#$%&'($)*+)#,"#-(.')

/
0$

%#
01

2
%0
"
.
*"

,*
%0
-

)
$

34567456

%0-)

+"$$018)*)9)'2%0".*%0-)$

:

;"!)#
%0-0.<
1"2./

=++)#
%0-0.<
1"2./

%0-0.<*+#)/0'%(1080%>

!"#$%&'($)*<2(#(.%))

?0.0-(8
"1$)#@)/
)9)'2%0".

%0-)

?(90-(8
"1$)#@)/
)9)'2%0".

%0-)

-)($2#)/*)9)'2%0".*%0-)$

6A)*('%2(8*3456
-2$%*1)*,"2./*"#
2++)#*1"2./)/

Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset of
measured executions. Its minimum and maximum are the minimal observed execution times and
maximal observed execution times, resp. The darker curve, an envelope of the former, represents
the times of all executions. Its minimum and maximum are the best-case and worst-case execution
times, resp., abbreviated BCET and WCET.

The literature on timing analysis has created a confusion by not always making
a distinction between worst-case execution times and estimates for them. We will
avoid this misnomer in this survey.

We will use the term timing analysis for the process of deriving execution-time
bounds or estimates. A tool that derives bounds or estimates for the execution
times of application tasks is called a timing-analysis tool. We will concentrate on
the determination of upper bounds or estimates of the WCET unless otherwise
stated. All tools described in Section 6 with the exception of SymTA/P offer
timing analysis of tasks in uninterrupted execution. Here, a task may be a unit of
scheduling by an operating system, a subroutine, or some other software unit. This
unit is mostly available as a fully-linked executable. Some tools, however, assume
the availability of source code and of a compiler supporting a subsequent timing
analysis.

Organization of the article

Section 2 introduces the problem and its subproblems and describes methods be-
ing used to solve it. Sections 3 and 4 present two categories of approaches, static
and measurement-based. Section 6 consists of detailed tool descriptions. Section 7
resumes the state of the art and the deployment and use in industry. Section 8
lists limitations of the described tools. Section 9 gives a condensed overview of the
tools in a tabulated form. Section 10 explains, how timing analysis is or should
be integrated in the development process. Section 11 concludes the paper by pre-
senting open problems and the perspectives of the domain mainly determined by
architectural trends.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

Wil08&R.&Wilhelm&et&al.&(2008).&The&Worst5Case&Execu;on&Time&Problem&—&Overview&of&Methods&and&Survey&of&Tools.

©"2014"B."Brandenburg"(MPI5SWS) 3

Terminology

WCET%=%maximum%ever%observed%(on%target%pla9orm)

BCET%=%minimum%ever%observed

ACET%=%average,%dependent%on%input,%BCET%≤%ACET%≤%WCET

It’s%important%to%dis.nguish%between%bounds%(or%es(mates)%and%the%
actual%WCET/BCET.
➞%Safety:%bound%≥%actual.
➞%Tightness:%bound%close%to%actual%value.

©"2014"B."Brandenburg"(MPI5SWS) 4

WCET%Analysis%Challenges

Two$issues$mustbeconsidered:
➞$so#ware(behavior$(control$flow)
➞$hardware(.ming$(basic$block$bounds).

Processor'caches,"out,of,order"processor"pipelines,"specula1ve'execu1on
➞"move"the"ACET"closer"to"the"BCET"(and"may"even"reduce"the"BCET)
➞"typically"make"the"WCET"worse
➞"increase"the"span"between"ACET"and"WCET.

Caches'and'specula-on'make'the'precise'-ming'more'dependent'on'the'
execu-on'history,'which'is'difficult'to'predict'precisely.

©"2014"B."Brandenburg"(MPI5SWS) 5

Typical(So+ware(Restric2ons
• no$recursion

• no$unbounded$loops

• no$func0on$pointers$/$virtual$method$dispatch

• no/restricted$pointer$aliasing

• no$dynamic$linking

• no$dynamic$memory$management

©"2014"B."Brandenburg"(MPI5SWS) 6

Programs as Graphs
 If is even:
 If is odd:

e be = (b2) e
2

e be = b × (b2) e − 1
2

Control-Flow
Graph

Each node is a
basic block

Optimization Formulation [1/3]
• Let denote the CFG

‣ and

• Let X be a vector of
variables recording execution counts

‣ = no. of times basic block is executed

• X is valid if its elements correspond to a
feasible execution of the program

‣ E.g., in the CFG on the right, for a valid X

- , ,

G = (V, E)
n = |V | m = |E |

= (x1, x2, …, xn)

xi i

x1 = x6 = 1 x2 = x3 + 1 x3 = x5

Control-Flow
Graph

Each node is a
basic block

Optimization Formulation [2/3]
• Flow constraints

‣ Unit flow at source: and

‣ Conservation of flow:

- = no. of times the edge from node to is executed

- and

• E.g., in the CFG on the right

‣ and

‣ and

‣ and

‣ and

• One valid solution: X

x1 = 1 xn = 1
xi = ∑

j∈Pi

dji = ∑
k∈Si

dik

di,j i j

P1 = ∅ Sn = ∅

x1 = 1 x6 = 1
x1 = d12 x2 = d12 + d52 = d23 + d26

x3 = d23 = d34 + d35 x4 = d34 = d45

x5 = d35 + d45 = d52 x6 = d26

= (1, 2, 3, 0, 1, 1)

Control-Flow
Graph

Each node is a
basic block

Optimization Formulation [3/3]
• Let be an upper bound on the execution

time of basic block

‣ WCET = maximum possible over all valid X

• Linear programming (LP) formulation

‣ Find X that gives

‣ Subject to and

• Drawbacks?

wi
i

n

∑
i=1

wixi

max
xi, 1≤i≤n

n

∑
i=1

wixi

x1 = xn = 1 xi = ∑
j∈Pi

dji = ∑
k∈Si

dik

Control-Flow
Graph

Each node is a
basic block

Logical Flow Constraints [1/2]
 If is even:
 If is odd:

e be = (b2) e
2

e be = b × (b2) e − 1
2

Control-Flow
Graph

Each node is a
basic block

 How many times 
 around the while loop?

 x3 ≤ 32

Logical Flow Constraints [2/2]

 Are there any 
 infeasible paths?

 d12 + d34 ≤ 1

Bounds for Basic Blocks
• How to estimate upper bound on the execution time of basic block ?

• Challenges

‣ Requires detailed micro-architectural modelling

‣ Cache miss versus a hit can change latency by a factor of 100

- If the analysis does not differentiate between cache hits and misses, the computed bound may be a
hundred times larger than the actual execution time

wi i

Examples
• Is there a bound on the number of iterations of

the while loop? Justify your answer?

• How many total paths does this program have?
How many of them are feasible, and why?

• Write down the system of flow constraints,
including any logical flow constraints, for the
control-flow graph of this program?

