
Multiprocessor platforms for real-time systems

Why?

Models of multiprocessor systems

Scheduling policies for multiprocessor systems

Schedulability tests

The advantages of multiprocessor systems

• Greater computational power (obviously!)

• Power savings

• More slower processors when compared to a few fast (power-hungry)

processors

• Easier heat dissipation

• Reliability

• Backups for critical tasks

• Migrations when some processors fail

• Security and isolation

• Critical tasks can be separated from non-critical tasks

Models of multiprocessor systems

• Identical multiprocessors

• Each processor has the same computing capacity

• Uniform multiprocessors

• Different processors have different computing capacities

• The faster a processor is, the lower the execution time of a task

• Heterogeneous multiprocessors

• Each (task, processor) pair may have a different computational attribute

• Execution times of a task may vary from processor to processor but there is no

well-defined relationship

Multiprocessor models

P1 P2 P3

F
ra

c
tio

n
 o

f c
o

m
p

u
tin

g
 c

a
p

a
c
ity

Identical multiprocessors

P1 P2 P3

Task T1

Identical multiprocessors

P1 P2 P3

Task T1

Identical multiprocessors

P1 P2 P3

Task T1

Identical multiprocessors

P1 P2 P3

Task T1 Task T2

Uniform multiprocessors

P1 P2 P3

Task T1

x

speed = 1 speed = 2 speed = 3

Uniform multiprocessors

P1 P2 P3

Task T1

x

x/2

speed = 1 speed = 2 speed = 3

Uniform multiprocessors

P1 P2 P3

Task T1

x

x/2 x/3

speed = 1 speed = 2 speed = 3

Uniform multiprocessors

P1 P2 P3

Task T1 Task T2

x

x/2 x/3

y y/2 y/3

speed = 1 speed = 2 speed = 3

Heterogeneous multiprocessors

P1 P2 P3

Task T1 Task T2

x/2 x/3

x

y

Heterogeneous multiprocessors

P1 P2 P3

Task T1 Task T2

x/2 x/3

x

y y

Heterogeneous multiprocessors

P1 P2 P3

Task T1 Task T2

x/2 x/3

x

y

1.5 y

y

Heterogeneous multiprocessors

x/2 x/3

x

DSP chip Graphics co-processorGraphics-intensive CPU
task:

Number-crunching

task:

x/2 x/3

y

1.5 y
y

Multiprocessor scheduling is difficult!

Multiprocessor scheduling: Anomaly

Jobs cannot migrate across
processors but can be
preempted on the processor
to which they are assigned

Jobs are scheduled
according to their priorities:
!" > !$ > !% > !&

'$ = 6

'$ = 2

Multiprocessor scheduling: Anomaly

Jobs cannot migrate across
processors but can be
preempted on the processor
to which they are assigned

Jobs are scheduled
according to their priorities:
!" > !$ > !% > !&

'$ = 6

'$ = 2

Is this sufficient to conclude that
all jobs meet their deadlines?

Multiprocessor scheduling: Anomaly

Jobs cannot migrate across
processors but can be
preempted on the processor
to which they are assigned

Jobs are scheduled
according to their priorities:
!" > !$ > !% > !&

'$ = 6

'$ = 2

Best case for +&
is when '$ = 5

Worst case for +&
is when '$ = 3

Multiprocessor scheduling: Anomaly

Jobs cannot migrate across
processors but can be
preempted on the processor
to which they are assigned

Jobs are scheduled
according to their priorities:
!" > !$ > !% > !&

'$ = 6

'$ = 2

Best case for +&
is when '$ = 5

Worst case for +&
is when '$ = 3

If . = max
2∈ 4

'2
5 − '2

7 , then will need 8 .4 time to verify schedulability!

Resource management for real-time systems

• Given a multiprocessing platform and a set of recurring tasks with deadlines,

can the tasks be scheduled to meet their deadlines on the platform?

• Standard recurring task model

• Tasks {Ti}

• Periodic tasks with periods {Pi}

• Execution times of the tasks {ei}

• Known deadlines

Classification of MP scheduling approaches

Global vs. partitioned scheduling

Partitioned scheduling vs. global scheduling

• Partitioned scheduling is easier to implement and reason about

• Once tasks are assigned to a processor, we can apply known schedulability

tests

• Without migration it is easier to maintain context information

• When processors are on different chips migration requires context transfer,

cache problems, etc.

• Global scheduling, however, is more flexible

• Allowing migration improves schedulability

• On-chip multiprocessing minimizes some of the overhead of job migration

Clustered scheduling

• A task can only migrate within a predefined subset of processors (cluster)

Partitioned Scheduling

• Partitioned scheduling problem has two separate dimensions:

• Spatial dimension (task to processor allocation)

• Which processor should a task execute on?

• Temporal Dimension (local scheduling policy (per processor))

• Once tasks are pinned to processors, how do we schedule the tasks on every
processor?

Partitioned scheduling

• Each processor manages its own ready queue

• The processor for each task is determined off-line

• The processor cannot be changed at run time

Partitioned scheduling

Partitioned scheduling

• We can use either fixed priority (rate monotonic) or dynamic priority (EDF)

policies

• Need to assign tasks to processors such that the utilization bound (or other

schedulability condition) is satisfied

• For simplicity we will assume that any task can be allocated to any processor

• This may not always be the case because of resource requirements and so on

P1 P2

T1

T2

T3

T4

Partitioned scheduling

• We can use either fixed priority (rate monotonic) or dynamic priority (EDF)

policies

• Need to assign tasks to processors such that the utilization bound (or other

schedulability condition) is satisfied

• For simplicity we will assume that any task can be allocated to any processor

• This may not always be the case because of resource requirements and so on

P1 P2

T1T2

T3T4

Any assignment of tasks to

processors is suitable as long as

utilization bounds are not violated.

Is closely related to the bin packing

problem, which is NP-Hard.

Spatial dimension (task to processor allocation)

• This is the task partitioning problem

• Consider the identical multiprocessor case (homogeneous)

Given U tasks with utilizations V",… , V4 and a set of I processors,
each running a local scheduling algorithm with utilization bound
(capacity, volume) WX, is there an assignment of tasks to processors
so that the utilization bound of each processor is not violated?

If such assignment exists, how do we compute it?

Spatial dimension (task to processor allocation)

• This is the task partitioning problem

• Consider the identical multiprocessor case (homogeneous)

• Analogy with the BIN-PACKING problem

• Optimization version: Given U items with sizes V", … , V4, what is the minimum number of bins, each
having capacity Y, are needed to pack all items so that each bin’s capacity is not exceeded?

Given U tasks with utilizations V",… , V4 and a set of I processors,
each running a local scheduling algorithm with utilization bound
(capacity, volume) WX, is there an assignment of tasks to processors
so that the utilization bound of each processor is not violated?

If such assignment exists, how do we compute it?

Bin Packing – Practical Examples

• How to store files into CDs

• How to fill minibuses with groups
of people that must stay together

• How to cut pieces of pipes from
pipes of given length to
minimize wastes.

Spatial dimension (task to processor allocation)

• This is the task partitioning problem

• Consider the identical multiprocessor case (homogeneous)

• Analogy with the BIN-PACKING problem

• Optimization version: Given U items with sizes V", … , V4, what is the minimum number of bins, each
having capacity Y, are needed to pack all items so that each bin’s capacity is not exceeded?

• Decision version: Given U items with sizes V", … , V4, is there a packing of the items into at most I
bins of capacity Y	each so that the capacity of each bin is not exceeded?

Given U tasks with utilizations V",… , V4 and a set of I processors,
each running a local scheduling algorithm with utilization bound
(capacity, volume) WX, is there an assignment of tasks to processors
so that the utilization bound of each processor is not violated?

If such assignment exists, how do we compute it?

Spatial dimension (task to processor allocation)

• BIN-PACKING is NP-Complete in the strong sense

• And so is the task partitioning problem

• Exact solution methods are exponential-time (unless P = NP)

• Integer Linear Programming, Branch & Bound, etc…

• Our next best option: Approximation Schemes

• Those are algorithms that produce approximate solutions but with provable
guarantees on the quality of the solutions they return

• How do we quantify approximation error (optimality gap)? What is a suitable metric?
(next: either utilization bounds or processor speed-up factors)

• Assumption: Local scheduling policy is EDF so that WX = 1 for all processors

Bin Packing Heuristics

• Next Fit (NF)

• First Fit (FF)

• Best Fit (BF)

• Worst Fit (WF)

Bin Packing Heuristics

However,

NF has a poor performance since it does not exploit the empty space in the previous bins

FF improves the performance by exploiting the empty space available in all the used bins.

BF tends to fill the used bins as much as possible.

WF tends to balance the load among the used bins.

The performance of each algorithm strongly depends on the input sequence

The First Fit Decreasing (FFD) heuristic

• Most used heuristic: First Fit Decreasing (FFD)

• Maintain a list of “opened” processors so far (initially empty)

The First Fit Decreasing (FFD) heuristic

• Most used heuristic: First Fit Decreasing (FFD)

• Maintain a list of “opened” processors so far (initially empty)

• Sort the jobs in decreasing order of utilizations V1 > V2 > 	… > VU

The First Fit Decreasing (FFD) heuristic

• Most used heuristic: First Fit Decreasing (FFD)

• Maintain a list of “opened” processors so far (initially empty)

• Sort the jobs in decreasing order of utilizations V1 > V2 > 	… > VU

• In this order, pack VZ into the the oldest (earliest opened) processor into which it fits

The First Fit Decreasing (FFD) heuristic

• Most used heuristic: First Fit Decreasing (FFD)

• Maintain a list of “opened” processors so far (initially empty)

• Sort the jobs in decreasing order of utilizations V1 > V2 > 	… > VU

• In this order, pack VZ into the the oldest (earliest opened) processor into which it fits

• If none of currently open processors have enough remaining capacity (utilization) to accommodate
V2, open a new processor if we have not exhausted all I processor and put VZ in it

The First Fit Decreasing (FFD) heuristic

• Most used heuristic: First Fit Decreasing (FFD)

• Maintain a list of “opened” processors so far (initially empty)

• Sort the jobs in decreasing order of utilizations V1 > V2 > 	… > VU

• In this order, pack VZ into the the oldest (earliest opened) processor into which it fits

• If none of currently open processors have enough remaining capacity (utilization) to accommodate
V2, open a new processor if we have not exhausted all I processor and put VZ in it

• If we used all I processors, declare the task set UNSCHEDULABLE

Ub =
m + 1

2

Utilization bounds for partitioned scheduling with EDF

• When tasks are allocated to processors using the FFD heuristic, we can derive

a utilization upper-bound for a uniform multiprocessor system that guarantees

schedulability

• Let m be the number of processors: then the maximum possible utilization of

the system is m (each processor can have a utilization up to 1)

• Proof sketch

• Consider a task set with m+1 tasks, each task having utilization 1/2; this task

set is schedulable

• If each task has utilization slightly greater than 1/2, the task set is not

schedulable

Ub =
m + 1

2

1
2

Utilization bounds for partitioned scheduling with EDF

• When tasks are allocated to processors using the FFD heuristic, we can derive

a utilization upper-bound for a uniform multiprocessor system that guarantees

schedulability

• This is a sufficient condition but not necessary

5

1 2 3 4

Schedulable

Ub =
m + 1

2

1
2

+ �

Utilization bounds for partitioned scheduling with EDF

1 2 3 4

Not

schedulable

5

• When tasks are allocated to processors using the FFD heuristic, we can derive

a utilization upper-bound for a uniform multiprocessor system that guarantees

schedulability

• This is a sufficient condition but not necessary

Ub =
m + 1

2

Utilization bounds for partitioned scheduling with EDF

• The utilization can be rather poor even though we have many processors

• The overall utilization is as low as 50%!

• When tasks are allocated to processors using the FFD heuristic, we can derive

a utilization upper-bound for a uniform multiprocessor system that guarantees

schedulability

• This is a sufficient condition but not necessary

• T consists of consists of m+1 tasks, each
of utilization 0.5+ε

• U = (m+1)(0.5+ε)

• U is larger than the (m+1)/2 utilization
bound

• According to utilization bounds, it is
deemed unschedulable

• For no ε > 0 is T is schedulable on m
processors by any algorithm, not even by
optimal

• For T one pays the penalty of a utilization
loss of (m − (m + 1)/2) as a consequence
of choosing to do partitioned scheduling,
regardless of which particular partitioning
algorithm we use.

• T’ consists of 2(m+1) tasks, each of
utilization (0.5+ε)/2

• U’ = (m+1)(0.5+ε)

• U’ larger than the (m+1)/2 utilization
bound

• According to utilization bounds, it is
deemed unschedulable

• There is ε > 0 for which T’ is schedulable
on m processors! Can you come up with
such ε?

• Any utilization loss arises from the choice
of partitioning algorithm, not merely the
decision to go with partitioned (as
opposed to global) scheduling.

• T consists of consists of m+1 tasks, each
of utilization 0.5+ε

• U = (m+1)(0.5+ε)

• U is larger than the (m+1)/2 utilization
bound

• According to utilization bounds, it is
deemed unschedulable

• For no ε > 0 is T is schedulable on m
processors by any algorithm, not even by
optimal

• For T one pays the penalty of a utilization
loss of (m − (m + 1)/2) as a consequence
of choosing to do partitioned scheduling,
regardless of which particular partitioning
algorithm we use.

• T’ consists of 2(m+1) tasks, each of
utilization (0.5+ε)/2

• U’ = (m+1)(0.5+ε)

• U’ larger than the (m+1)/2 utilization
bound

• According to utilization bounds, it is
deemed unschedulable

• There is ε > 0 for which T’ is schedulable
on m processors! Can you come up with
such ε?

• Any utilization loss arises from the choice
of partitioning algorithm, not merely the
decision to go with partitioned (as
opposed to global) scheduling.

Moral: Utilization bounds do not distinguish between both cases!

Global scheduling

• Is an alternative to partitioning

• Tasks may migrate among processors

• Appropriate for tightly-coupled systems

1

Global vs. Partitioned: Pros & Cons

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)

• Task !%." has parameters '%." 	= +%." 	= + + 1

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

• What happens if we increase the number of processors?

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

• What happens if we increase the number of processors?

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless
of the number of processors.

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

• What happens if we increase the number of processors?

• Question: Is this task set partitioned-schedulable?

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless
of the number of processors.

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

• What happens if we increase the number of processors?

• Question: Is this task set partitioned-schedulable?

• Answer: Yes! for example, when 1 < +,	 we need only two processors!

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless
of the number of processors.

The Dhall Effect

• Dhall's Effect shows the limitation of global EDF and RM: both utilization bounds
tend to 1, independently of the value of m.

• Researchers lost interest in global scheduling for ~25 years, since late 1990s.

• Such a limitation is related to EDF and RM, not to global scheduling in general

2

Global Scheduling: Negative Results

• Weak theoretical framework
• Unknown critical instant

• Global EDF is not optimal

• Any global job-fixed (or task-dynamic) priority scheduler is not optimal

• Optimality only for implicit deadlines

• Many sufficient tests (most of them incomparable)

Global vs. Partitioned

• There are tasks that are schedulable only with a global scheduler!

Global vs. Partitioned

• But there are also task sets that are schedulable only with a partitioned scheduler

Global vs. Partitioned

• Example of an unfeasible global schedule with E6 > E7 > EG > EH

