Basic Concepts and Aperiodic Task Scheduling CPEN 432 Real-Time System Design

Arpan Gujarati University of British Columbia

What are Real-Time Systems? [1/3]

1.1 INTRODUCTION

Real-time systems are computing systems that must react within precise time constraints to events in the environment. As a consequence, the correct behavior of these systems depends not only on the value of the computation but also on the time at which the results are produced [SR88]. A reaction that occurs too late could be useless or even dangerous. Today, real-time computing plays a crucial role in our society, since an increasing number of complex systems rely, in part or completely, on computer control. Examples of applications that require real-time computing include the following:

- Chemical and nuclear plant control,
- control of complex production processes,
- railway switching systems,
- automotive applications,

Real-Time Systems Series

Giorgio C. Buttazzo

Hard Real-Time Computing Systems

Predictable Scheduling Algorithms and Applications

Third Edition

What are Real-Time Systems? [2/3]

- The **time** it takes to perform a task is
 - not just an issue of performance
 - but critical to the correct functioning of the system
- Examples
 - Airbag deployment in cars, processing of sensor data in drones, etc.
- Challenges

1. Can we **engineer** the system such that it always satisfies "timing constraints"? 2. Can we prove in advance that the system will always satisfy "timing constraints"?

What are Real-Time Systems? [3/3]

Model the system and the workload

- # instructions in the blinking code?
- Is there an OS? # instructions between calls to the blinking code?
- Processor speed? Time to execute a single instruction? Caching effects?
- Ignore unnecessary details …
 - Can we ignore the GPU?
 - Disable interrupts and ignore?

For the given model

 Prove that the specified timing constraint is always satisfied

<image>

<u>Timing constraint</u>: The status LED blinks every 5ms, and continues blinking for precisely 1ms

Basic Concepts

Operating System

- Process, Task, Thread
 - Computation executed by the CPU in a
 Task waiting for CPU allocation sequential fashion
 - Assumption: Process = Task = Thread
 Running task
 Task executing on a CPU

Scheduling

Policy or set of rules that determine how tasks are mapped to processors and the order in which they execute
 Ready queue
 Where all ready tasks are kept

• Dispatching

 Mechanism through which a CPU is allocated to a task (e.g., context switch) • Ready task

- Preemption
 - Suspending the running task and inserting into the ready queue

6

Schedule as an Integer Step Function

- Given a set of tasks $\tau = \{\tau_1, \tau_2, \ldots, \tau_n\}$ and a **uniprocessor** CPU
 - A schedule can be defined using an integer step function $\sigma(t)$
- Formally, $\sigma : \mathbb{R}^+ \to \mathbb{N}$ such that - $t \in [t_1, t_2)$ and $\forall t' \in [t_1, t_2)$ we have $\sigma(t) =$
- In other words,
 - $\sigma(t) = k$, with k > 0, means that task τ_k is executing at time t
 - $\sigma(t) = 0$ means that the CPU is idle

$$\forall t \in \mathbb{R}^+, \exists t_1, t_2 \text{ such that} = \sigma(t')$$

Schedule as an Integer Step Function

Figure 2.3 from the textbook — Example of a preemptive schedule

Task Parameters

- Arrival time a_i is the time at which task τ_i becomes ready for execution; also denoted as release time r_i
- Computation or execution time C_i is the time needed by the processor to execute the task without interruption
- Absolute deadline d_i is the time before which a task should be executed to avoid damage to the system
- **Relative deadline** D_i is the difference $d_i r_i$ between the absolute deadline and the arrival time
- Start time s_i is the time at which the task starts its execution
- Finishing time f_i is the time at which the task finishes its execution
- **Response time** R_i is the difference $f_i r_i$ between the finishing time and the arrival time
- Laxity or slack X_i is the maximum time a task's execution can be delayed so that it can still meet its deadline: $d_i r_i C_i$
- Lateness L_i is the delay $f_i d_i$ of a task with respect to its deadline; Tardiness is simply max $(0, L_i)$

Activation Frequency

- **Periodic** tasks consist of an infinite sequence of identical iterations

 - These iterations are called instances or jobs, and are regularly activated at a constant rate Example: Periodic sensing of environment
 - Notation: $\tau_{i,k}$ denotes the k^{th} job of a periodic task τ_i
- Aperiodic tasks
 - May consist of an infinite sequence of identical jobs that are activated arbitrarily Or may consist of a finite number of jobs that are activated arbitrarily

 - Or may consist of just a single job
 - Example: Event-triggered tasks, interrupts, etc.

This lecture: Scheduling aperiodic tasks with single jobs \bullet

• Notation: Set of tasks / jobs $J = \{J_1, J_2, \dots, J_n\}$

Timing Constraints

- What are the implications of a **deadline miss** for ...
 - airbag deployment?
 - an automatic plant watering device?
 - audio streaming application?
 - musical notes in a live orchestra

Performance Metrics

- Question: If the goal is to satisfy timing constraints, why do we care about performance metrics?
 - For comparing different scheduling algorithms
 - More efficient algorithm can support more tasks
 - Embedded platforms have other constraints
 - E.g., minimize power consumption

Average response time: Generally not useful for real-time systems

$$\overline{f_r} = \frac{1}{n} \sum_{i=1}^n (f_i - c_i)$$

Total completion time:

Implies good system utilization $t_c = \max_i (f_i) - \min_i (a_i)$

Weighted sum of completion times:

Useful if tasks have different importance

 $t_w = \sum_{i=1}^{\infty} w_i f_i$

Maximum lateness: Useful for soft real-time tasks

 $L_{max} = \max_{i} (f_i - d_i)$

Maximum number of late tasks: Useful for soft firm-time tasks

$$N_{late} = \sum_{i=1}^{n} miss($$

where

$$miss(f_i) = \begin{cases} 0 & \text{if } f_i \\ 1 & \text{other} \end{cases}$$

Aperiodic Task Scheduling (Job Scheduling)

Classification of Scheduling Algorithms

Property

Can a task be interrupted at any time?

Are scheduling decisions based on fixed parameter priorities that do not change at runtime?

Is the entire schedule generated in advance and sto

Does the scheduling algorithm always minimizes a metric for a task set?

Does the schedule repeat if the task set repeats?

	Yes?	No?
	Preemptive	Non-preemptive
rs, such as fixed task	Static	Dynamic
ored in a table?	Offline	Online
specified performance	Optimal	Heuristic
	Deterministic	Random

Scenario #1

Given

- Set of *n* aperiodic jobs $J = \{J_1, J_2, \dots, J_n\}$
- Synchronous arrival times $\forall i : a_i = 0$
- Uniprocessor system

Objective

• Minimize the maximum lateness $L_{max} = max_i (f_i - d_i)$

Constraints

No job must misses its deadline

Scheduling policy?

Jackson's algorithm: Execute the tasks in order of non-decreasing deadlines

Scenario #1, Example #1

	J ₁	J ₂	J 3	J 4	J 5
Ci	1	1	1	3	2
d _i	3	10	7	8	5

- Classroom assignment
 - Can you draw the schedule?
 - Is the schedule feasible? Why?
 - What is L_{max} ?
 - Is this the minimum possible L_{max} ?

Jackson's Algorithm is Optimal w.r.t. minimizing L_{max} [1/3]

(1) For simplicity, assume that each deadline is unique: $\forall i, k, d_i \neq d_k$

- (2) Let Jackson's Algorithm produce schedule $\sigma_{Jackson}$ with maximum lateness $L_{max}(\sigma_{Jackson})$
- - (I) Since $\sigma_A \neq \sigma_{Jackson}$, there exists at least two jobs J_a and J_b such that:
 - (i) J_b immediately precedes J_a in schedule σ_A (as shown in the figure)
 - (ii) and $d_a < d_b$

 σ_A

Jackson's Algorithm is Optimal w.r.t. minimizing L_{max} [2/3]

(4) We transposition (\rightarrow) schedule σ_A to σ'_A by interchanging the time slots of J_a and J_b (5) From the figure, $L_{max, a}$ is the maximum among all four lateness values illustrated, since

(I)
$$-L_{max,a} < -L'_{max,a}$$

(II) $-L_{max,a} < -L'_{max,b}$
(III) $-L_{max,a} < -L_{max,b}$

(6) First case: The maximum lateness in σ_A corresponded to J_a , i.e., $L_{max}(\sigma_A) = L_{max,a}$ σ_A (I) From (5) above, since the maximum lateness of J_a and J_b in σ'_A can only reduce w.r.t. $L_{max,a}$, (II) Thus, $L_{max}(\sigma_A) \ge L_{max}(\sigma'_A)$ in the first case (7) Second case: The maximum lateness in σ_A corresponded to some J_c (grey region in the figure), i.e., $L_{max}(\sigma_A) = L_{max,c} > L_{max,a}$ (I) The schedule of all other jobs and their σ_A maximum lateness remains intact in σ'_A (II) Thus, $L_{max}(\sigma_A) = L_{max}(\sigma'_A)$ in the second case

Jackson's Algorithm is Optimal w.r.t. minimizing L_{max} [3/3]

(8) From (6) and (7), transposition $\sigma_A \rightsquigarrow \sigma'_A$ cannot result in a higher L_{max} (9) We can perform a finite number of such transpositions, such that $\sigma_A \rightsquigarrow \sigma'_A \rightsquigarrow \sigma'_A \rightsquigarrow \sigma'_A \rightsquigarrow \sigma'_A$ (10) From (4)-(8), $L_{max}(\sigma_A) \ge L_{max}(\sigma'_A) \ge L_{max}(\sigma''_A) \ge \dots \ge L_{max}(\sigma_{Jackson})$ (11) This contradicts (3). Hence, Jackson's algorithm is indeed optimal and results in the minimum possible

Basic Concepts and Aperiodic Task Scheduling (contd.) CPEN 432 Real-Time System Design

Arpan Gujarati University of British Columbia

Recap: Task Parameters

Arrival or release time:

• Job J_i – "I am ready for execution!"

Absolute deadline:

• Job J_i – "I better be done by now!"

Start time:

Operating system — "Start working!"

Finishing time:

• Job J_i – "I am done!"

Relative time durations

$\bullet \ C_i = f_i - s_i$	
$\blacktriangleright D_i = d_i - a_i$	
$\blacktriangleright R_i = f_i - a_i$	
$\bullet X_i = D_i - C_i$	
$\blacktriangleright L_i = f_i - d_i$	

Recap: Activation Frequencies

- **Periodic** tasks consist of an infinite sequence of identical iterations These iterations are called instances or jobs, and are regularly activated at a
 - constant rate
 - Example: Periodic sensing of environment
 - Notation: $\tau_{i,k}$ denotes the k^{th} job of a periodic task τ_i

• Aperiodic tasks

- May consist of an infinite sequence of identical jobs that are activated arbitrarily Or may consist of a finite number of jobs that are activated arbitrarily
- Or may consist of just a single job
- Example: Event-triggered tasks, interrupts, etc.

Recap: Scenario #1

Given

- Set of *n* aperiodic jobs $J = \{J_1, J_2, \dots, J_n\}$
- Synchronous arrival times $\forall i : a_i = 0$
- Uniprocessor system

Objective

• Minimize the maximum lateness $L_{max} = max_i (f_i - d_i)$

Constraints

No job must misses its deadline

Scheduling policy?

Jackson's algorithm: Execute the tasks in order of non-decreasing deadlines

Jackson's Algorithm is Optimal w.r.t. minimizing L_{max}

- For simplicity, assume that each deadline is unique: $\forall i, k, d_i \neq d_k$
- Let Jackson's Algorithm produce schedule $\sigma_{Jackson}$ with maximum lateness $L_{max}(\sigma_{Jackson})$ (2)
- Suppose there exists another algorithm A that produces schedule $\sigma_A \neq \sigma_{Jackson}$ with maximum lateness $L_{max}(\sigma_A) < L_{max}(\sigma_{Jackson})$ (3)
 - (I) Since $\sigma_A \neq \sigma_{Jackson}$, there exists at least two jobs J_a and J_b such that:
 - (i) J_b immediately precedes J_a in schedule σ_A (as shown in the figure)

(ii) and
$$d_a < d_b$$

- We transposition (\rightsquigarrow) schedule σ_A to σ'_A by interchanging the time slots of J_a and J_b (4)
- From the figure, $L_{max,a}$ is the maximum among all four lateness values illustrated, since (5)

(I)
$$-L_{max,a} < -L'_{max,a}$$

(II)
$$-L_{max,a} < -L'_{max,b}$$

$$(III) - L_{max,a} < -L_{max,b}$$

First case: The maximum lateness in σ_A corresponded to J_a , i.e., $L_{max}(\sigma_A) = L_{max,a}$ (6)

- From (5) above, since the maximum lateness of J_a and J_b in σ'_A can only reduce w.r.t. $L_{max, a}$, **(I)**
- (II) Thus, $L_{max}(\sigma_A) \ge L_{max}(\sigma'_A)$ in the first case

Second case: The maximum lateness in σ_A corresponded to some J_c (grey region in the figure), i.e., $L_{max}(\sigma_A) = L_{max,c} > L_{max,a}$ (7)

The schedule of all other jobs and their maximum lateness remains intact in σ'_A **(|)**

(II) Thus, $L_{max}(\sigma_A) = L_{max}(\sigma'_A)$ in the second case

(8) From (6) and (7), transposition $\sigma_A \rightsquigarrow \sigma'_A$ cannot result in a higher L_{max}

(9) We can perform a finite number of such transpositions, such that $\sigma_A \rightsquigarrow \sigma'_A$

(10) From (4)-(8), $L_{max}(\sigma_A) \ge L_{max}(\sigma'_A) \ge L_{max}(\sigma''_A) \ge \dots \ge L_{max}(\sigma_{Jackson})$

(11) This contradicts (3). Hence, Jackson's algorithm is indeed optimal and results in the minimum possible L_{max}

$$\rightsquigarrow \sigma''_A \rightsquigarrow \ldots \rightsquigarrow \sigma_{Jackson}$$

Scenario #1, Example #2

- Classroom assignment
 - Can you draw the schedule?
 - Is the schedule feasible? Why?
 - How can we guarantee feasibility?

	J ₁	J ₂	J 3	J 4	J 5
Ci	1	2	1	4	2
d _i	2	5	4	8	6

Scenario #1

Scheduling policy

- Jackon's algorithm is optimal with respect to L_{max} for all job sets, but it does not guarantee feasibility for all job sets!
- However, Jackson's algorithm guarantees feasibility if the job set Jsatisfies the following conditions.

Yes?

No?

Design time claim: "job set J is (not) schedulable using Jackson's algorithm."

Schedulability analysis

Scenario #2

- Given lacksquare
 - Set of *n* aperiodic jobs $J = \{J_1, J_2, \dots, J_n\}$
 - Arbitrary arrival times $\forall i, k : a_i \neq a_k$
 - Uniprocessor system with preemption
- **Objective** lacksquare
 - Minimize the maximum lateness $L_{max} = max_i (f_i d_i)$
- Constraints lacksquare
 - No job must misses its deadline
- **Scheduling policy?**
 - - -

Earliest Deadline First (EDF): At any instant, execute a ready task with the earliest absolute deadline If there is a tie, execute the task with the smaller ID, e.g., if $d_1 = d_2$, then execute J_1 before J_2

Scenario #2, Example #1

	J 1	J ₂	J 3	J ₄	J 5
a _i	0	0	2	3	6
Ci	1	2	2	2	2
d _i	2	5	4	10	9

- Classroom assignment
 - Can you draw the schedule?
 - Is the schedule feasible? Why?
 - What is L_{max} ?
 - Is this the minimum possible L_{max} ?

Jackson's Algorithm is Optimal w.r.t. minimizing L_{max}

- For simplicity, assume that each deadline is unique: $\forall i, k, d_i \neq d_k$
- Let Jackson's Algorithm produce schedule $\sigma_{Jackson}$ with maximum lateness $L_{max}(\sigma_{Jackson})$ (2)
- Suppose there exists another algorithm A that produces schedule $\sigma_A \neq \sigma_{Jackson}$ with maximum lateness $L_{max}(\sigma_A) < L_{max}(\sigma_{Jackson})$ (3)
 - (I) Since $\sigma_A \neq \sigma_{Jackson}$, there exists at least two jobs J_a and J_b such that:
 - (i) J_b immediately precedes J_a in schedule σ_A (as shown in the figure)

(ii) and
$$d_a < d_b$$

- We transposition (\rightsquigarrow) schedule σ_A to σ'_A by interchanging the time slots of J_a and J_b (4)
- From the figure, $L_{max,a}$ is the maximum among all four lateness values illustrated, since (5)

(I)
$$-L_{max,a} < -L'_{max,a}$$

(II)
$$-L_{max,a} < -L'_{max,b}$$

$$(III) - L_{max,a} < -L_{max,b}$$

First case: The maximum lateness in σ_A corresponded to J_a , i.e., $L_{max}(\sigma_A)$ (6)

- From (5) above, since the maximum lateness of J_a and J_b in σ'_A can **(I)**
- (II) Thus, $L_{max}(\sigma_A) \ge L_{max}(\sigma'_A)$ in the first case

Second case: The maximum lateness in σ_A corresponded to some J_c (grey region in the figure), i.e., $L_{max}(\sigma_A) = L_{max,c} > L_{max,a}$ (7)

The schedule of all other jobs and their maximum lateness remains intact in σ'_A **(|)**

(II) Thus, $L_{max}(\sigma_A) = L_{max}(\sigma'_A)$ in the second case

(8) From (6) and (7), transposition $\sigma_A \rightsquigarrow \sigma'_A$ cannot result in a higher L_{max}

(9) We can perform a finite number of such transpositions, such that $\sigma_A \rightsquigarrow \sigma'_A \rightsquigarrow \sigma''_A \rightsquigarrow \cdots \gg \sigma_{Jackson}$

(10) From (4)-(8), $L_{max}(\sigma_A) \ge L_{max}(\sigma'_A) \ge L_{max}(\sigma''_A) \ge \dots \ge L_{max}(\sigma_{Jackson})$

(11) This contradicts (3). Hence, Jackson's algorithm is indeed optimal and results in the minimum possible L_{max}

Do these arguments work for EDF?

 $-L_{max,b}$ σ_{A} $f_b = s_a$ $d_a d_b$ 0 Sh

 S_{o}^{\prime}

 $f'_a = s'_b$

 f'_b

 $d_a d_b$

$$= L_{max, a}$$
only reduce w.r.t. $L_{max, a}$,

σ

EDF is Optimal w.r.t. minimizing L_{max} [1/3]

(1) For simplicity, assume that each job has a unit execution time, i.e., $\forall i, C_i = 1$

(2) Let σ_{EDF} be the schedule produced by EDF, and let $\sigma_A \neq \sigma_{EDF}$ be the schedule produced by another algorithm A (3) We will show that EDF is optimal because

- (II) After each transposition, the maximum lateness cannot increase

(I) σ_A can be transformed into σ_{EDF} using a finite number of transpositions (\rightsquigarrow), that is, $\sigma_A \rightsquigarrow \sigma'_A \rightsquigarrow \sigma'_A \rightsquigarrow \sigma'_A \rightsquigarrow \sigma_{EDF}$

EDF is Optimal w.r.t. minimizing L_{max} [2/3]

- (4) How do we define a transposition (\rightarrow) in the case of EDF?
 - (I) Since $\sigma_A \neq \sigma_{EDF}$, there exists a time *t* such that

(i)
$$\sigma_A(t) \neq \sigma_{EDF}(t)$$
 but $\forall t^- < t$, $\sigma_A(t^-) = \sigma_{EDF}(t^-)$

(II) Let
$$\sigma_{EDF}(t) = J_e$$
 and $\sigma_A(t) = J_a$

- (i) Can $\sigma_{EDF}(t) = 0$ or $\sigma_A = 0$?
 - $\sigma_{EDF}(t) = 0$ and $\sigma_A \neq 0$ is not possible ...
 - $\sigma_{EDF}(t) \neq 0$ and $\sigma_A = 0$ is possible ...
- (III) Suppose that J_e is executed in schedule σ_A at time $t^+ > t$
 - (i) What if J_e 's execution in schedule σ_A has already completed before *t*? Not possible ...
- (IV) Transposition $\sigma_A \rightsquigarrow \sigma'_A$
 - (i) Exchange the time slices at [t, t + 1) and $[t^+, t^+ + 1)$ in schedule σ_A to obtain σ'_A

EDF is Optimal w.r.t. minimizing *L_{max}* [3/3]

- Proof of (3)(I), " σ_A can be transformed into σ_{EDF} using a finite number of (5) transpositions (->>), that is, $\sigma_A \rightsquigarrow \sigma'_A \rightsquigarrow \sigma''_A \rightsquigarrow \dots \rightsquigarrow \sigma_{EDF}$ "
 - (I) After the transposition at time *t*, the prefixes of schedules σ_A and σ_{EDF} corresponding to time slice [0, t + 1) are identical
 - (II) The length of prefixes identical in σ_A and σ_{EDF} increases after every transposition
 - (III) Since the number of jobs is finite, beyond a certain time t_{end} , no jobs are pending, and thus $\forall t' > t_{end}$, $\sigma_A(t') = \sigma_{EDF}(t') = 0$

Proof of (3)(II), "After each transposition, the maximum lateness cannot increase" (6)

- (I) For the special case ($\sigma_{EDF}(t) \neq 0$ and $\sigma_A = 0$), the proof is trivial ...
- (II) For the normal case ($\sigma_{EDF}(t) \neq 0$ and $\sigma_A \neq 0$)
 - If the maximum lateness in σ_A corresponded to J_e (i)

- Since $L_e = \max(L_e, L_a, L'_e, L'_a)$, transposition $\sigma_A \rightsquigarrow \sigma'_A$ can only reduce the maximum lateness from L_e to max (L'_a, L'_e)

- If the maximum lateness in σ_A corresponded to some other job J_c (ii)
 - Transposition $\sigma_A \rightsquigarrow \sigma'_A$ has no effect on the maximum lateness

Runtime Schedulability Test for EDF

- Arbitrary arrival times
 - Schedulability test has to be done dynamically, when a new task arrives
- - Is the system still schedulable?

• Jobs $J = \{J_1, J_2, \dots, J_n\}$ are activated before t, new job J_{n+1} arrives at t

Scenario #3

Given

- Set of *n* aperiodic jobs $J = \{J_1, J_2, \dots, J_n\}$
- Arbitrary arrival times $\forall i, k : a_i \neq a_k$
- Uniprocessor system with no preemption

Objective

• Minimize the maximum lateness $L_{max} = max_i (f_i - d_i)$

• Constraints

No job must misses its deadline

Scheduling policy?

Earliest Deadline First (EDF)?

Scenario #3, Example #1

	J ₁	J ₂	
a _i	0	1	
Ci	4	2	
d _i	12	10	

- Classroom assignment Can you draw the EDF schedule? Is the schedule feasible? Why?
- - What is L_{max} ?
 - ▶ Is this the minimum possible L_{max} ?

 - Why was this not a problem earlier?
 - Alternative algorithms?
 - Exhaustive search, heuristics -

EDF is work-conserving, hence is not optimal