
Basic Concepts and 
Aperiodic Task Scheduling
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1



What are Real-Time Systems? [1/3]

2



What are Real-Time Systems? [2/3]

• The time it takes to perform a task is

‣ not just an issue of performance 
‣ but critical to the correct functioning of the system


• Examples

‣ Airbag deployment in cars, processing of sensor data in drones, etc.


• Challenges

1. Can we engineer the system such that it always satisfies “timing constraints”?

2. Can we prove in advance that the system will always satisfy “timing constraints”?

3



What are Real-Time Systems? [3/3]

Timing constraint: The status LED blinks every 
5ms, and continues blinking for precisely 1ms

5ms

1ms

5ms

1ms

5ms
1ms

t0

Model the system and the workload

‣ # instructions in the blinking code?

‣ Is there an OS? # instructions 

between calls to the blinking code?

‣ Processor speed? Time to execute a 

single instruction? Caching effects?

‣ Ignore unnecessary details …


- Can we ignore the GPU?

- Disable interrupts and ignore?

For the given model 
‣ Prove that the specified timing 

constraint is always satisfied

≈

4



Basic Concepts



Operating System
• Process, Task, Thread 
‣ Computation executed by the CPU in a 

sequential fashion

‣ Assumption: Process = Task = Thread


• Scheduling 
‣ Policy or set of rules that determine how 

tasks are mapped to processors and the 
order in which they execute


• Dispatching 
‣ Mechanism through which a CPU is 

allocated to a task (e.g., context switch)

• Ready task

‣ Task waiting for CPU allocation


• Running task

‣ Task executing on a CPU


• Ready queue 
‣ Where all ready tasks are kept


• Preemption 
‣ Suspending the running task and 

inserting into the ready queue

6



Schedule as an Integer Step Function 

• Given a set of tasks  and a uniprocessor CPU

‣ A schedule can be defined using an integer step function 


• Formally,  such that ,  such that

-  and  we have 


• In other words,

‣ , with , means that task  is executing at time 


‣  means that the CPU is idle

τ = {τ1, τ2, …, τn}
σ(t)

σ : ℝ+ → ℕ ∀t ∈ ℝ+ ∃t1, t2
t ∈ [t1, t2) ∀t′ ∈ [t1, t2) σ(t) = σ(t′ )

σ(t) = k k > 0 τk t
σ(t) = 0

7



Schedule as an Integer Step Function 

Figure 2.3 from the textbook — Example of a preemptive schedule

 here because  is scheduledσ(t) = 1 J1

 now, because is  scheduledσ(t) = 2 J2

 is preempted, and  is scheduledJ1 J2

8



Task Parameters
• Arrival time  is the time at which task  becomes ready for execution; also denoted as release time 


• Computation or execution time  is the time needed by the processor to execute the task without interruption


• Absolute deadline  is the time before which a task should be executed to avoid damage to the system


• Relative deadline  is the difference  between the absolute deadline and the arrival time


• Start time  is the time at which the task starts its execution


• Finishing time  is the time at which the task finishes its execution


• Response time R_i is the difference  between the finishing time and the arrival time


• Laxity or slack  is the maximum time a task’s execution can be delayed so that it can still meet its deadline: 


• Lateness  is the delay  of a task with respect to its deadline; Tardiness is simply 

ai τi ri

Ci

di

Di di − ri

si

fi

fi − ri

Xi di − ri − Ci

Li fi − di max(0, Li)

9



Activation Frequency
• Periodic tasks consist of an infinite sequence of identical iterations


‣ These iterations are called instances or jobs, and are regularly activated at a constant rate

‣ Example: Periodic sensing of environment


‣ Notation:  denotes the  job of a periodic task 


• Aperiodic tasks

‣ May consist of an infinite sequence of identical jobs that are activated arbitrarily

‣ Or may consist of a finite number of jobs that are activated arbitrarily

‣ Or may consist of just a single job

‣ Example: Event-triggered tasks, interrupts, etc.


• This lecture: Scheduling aperiodic tasks with single jobs 
‣ Notation: Set of tasks / jobs 

τi,k kth τi

J = {J1, J2, …, Jn}

10



• What are the implications of a deadline miss for …

‣ airbag deployment?

‣ an automatic plant watering device?

‣ audio streaming application?

‣ musical notes in a live orchestra

Timing Constraints

v( fi)

fidi

Hard real-time

Utility 
function

Finishing time

Airbag 
deployment

Musical 
notes

Audio streaming

Control system

Soft real-time

Firm real-time
On-time

Non real-time

11



Performance Metrics
• Question: If the goal is to satisfy timing constraints, 

why do we care about performance metrics?

‣ For comparing different scheduling algorithms

‣ More efficient algorithm can support more tasks

‣ Embedded platforms have other constraints


- E.g., minimize power consumption

Implies good 
system utilization

Generally not useful for 
real-time systems

Useful if tasks have 
different importance

Useful for soft 
real-time tasks

Useful for soft 
firm-time tasks

12



Aperiodic Task Scheduling 
(Job Scheduling)



Classification of Scheduling Algorithms

Property Yes? No?

Can a task be interrupted at any time? Preemptive Non-preemptive

Are scheduling decisions based on fixed parameters, such as fixed task 
priorities that do not change at runtime? Static Dynamic

Is the entire schedule generated in advance and stored in a table? Offline Online

Does the scheduling algorithm always minimizes a specified performance 
metric for a task set? Optimal Heuristic

Does the schedule repeat if the task set repeats? Deterministic Random

14



Scenario #1
• Given 

‣ Set of  aperiodic jobs 


‣ Synchronous arrival times 

‣ Uniprocessor system


• Objective 
‣ Minimize the maximum lateness 


• Constraints 
‣ No job must misses its deadline


• Scheduling policy? 
‣ Jackson’s algorithm: Execute the tasks in order of non-decreasing deadlines

n J = {J1, J2, …, Jn}
∀i : ai = 0

Lmax = maxi ( fi − di)

15



Scenario #1, Example #1
• Classroom assignment

‣ Can you draw the schedule?

‣ Is the schedule feasible? Why?


‣ What is ?


‣ Is this the minimum possible ?
Lmax

Lmax

16



(1) For simplicity, assume that each deadline is unique: 

(2) Let Jackson’s Algorithm produce schedule  with maximum lateness 

(3) Suppose there exists another algorithm A that produces schedule  with maximum lateness 


(I) Since , there exists at least two jobs  and  such that:

(i)  immediately precedes  in schedule  (as shown in the figure)

(ii) and 

∀i, k, di ≠ dk
σJackson Lmax(σJackson)

σA ≠ σJackson Lmax(σA) < Lmax(σJackson)
σA ≠ σJackson Ja Jb

Jb Ja σA
da < db

Timesb

JaJb

fb = sa fa0
σA

CaCb

da db

−Lmax, a

−Lmax, b

Jackson’s Algorithm is Optimal w.r.t. minimizing  [1/3]Lmax

17



(4) We transposition ( ) schedule  to  by interchanging the time slots of  and 

(5) From the figure,  is the maximum among all four lateness values illustrated, since 


(I) 

(II) 

(III)

⇝ σA σ′ A Ja Jb
Lmax, a

−Lmax, a < − L′ max, a
−Lmax, a < − L′ max, b
−Lmax, a < − Lmax, b

Timesb

JaJb

fb = sa fa0
σA

CaCb

da db

−Lmax, a

−Lmax, b

(6) First case: The maximum lateness in  
corresponded to , i.e., 


(I) From (5) above, since the maximum lateness of 
 and  in  can only reduce w.r.t. ,


(II) Thus,  in the first case

(7) Second case: The maximum lateness in  

corresponded to some  (grey region in the figure), 
i.e., 


(I) The schedule of all other jobs and their 
maximum lateness remains intact in 


(II) Thus,  in the second case

σA
Ja Lmax(σA) = Lmax, a

Ja Jb σ′ A Lmax, a
Lmax(σA) ≥ Lmax(σ′ A)

σA
Jc

Lmax(σA) = Lmax, c > Lmax, a

σ′ A
Lmax(σA) = Lmax(σ′ A) Times′ a

JbJa

f′ a = s′ b f′ b0

σ′ A

Ca Cb

da db

−L′ max, b

−L′ max, a

Jackson’s Algorithm is Optimal w.r.t. minimizing  [2/3]Lmax

18



(8) From (6) and (7), transposition  cannot result in a higher 

(9) We can perform a finite number of such transpositions, such that 

(10) From (4)-(8), 

(11) This contradicts (3). Hence, Jackson’s algorithm is indeed optimal and results in the minimum possible 

σA ⇝ σ′ A Lmax
σA ⇝ σ′ A ⇝ σ′ ′ A ⇝ … ⇝ σJackson

Lmax(σA) ≥ Lmax(σ′ A) ≥ Lmax(σ′ ′ A) ≥ … ≥ Lmax(σJackson)

Jackson’s Algorithm is Optimal w.r.t. minimizing  [3/3]Lmax

19



Basic Concepts and 
Aperiodic Task Scheduling (contd.)
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

20



Recap: Task Parameters
Arrival or release time: 

‣ Job  — “I am ready for execution!”Ji

Start time: 
‣ Operating system — “Start working!”

Finishing time: 
‣ Job  — “I am done!”Ji

Absolute deadline: 
‣ Job  — “I better be done by now!”Ji

Time
si fi da or ai ri

Job Ji

Relative deadline Di

Response time Ri

Completion or 
execution time Ci

Time
si fi = da or ai ri

Job Ji
Laxity or slack Xi

Time
si fida or ai ri

Job Ji

Lateness Li

Relative time durations 
‣  
‣  
‣  
‣  
‣

Ci = fi − si
Di = di − ai
Ri = fi − ai
Xi = Di − Ci
Li = fi − di



Recap: Activation Frequencies
• Periodic tasks consist of an infinite sequence of identical iterations

‣ These iterations are called instances or jobs, and are regularly activated at a 

constant rate

‣ Example: Periodic sensing of environment


‣ Notation:  denotes the  job of a periodic task 


• Aperiodic tasks

‣ May consist of an infinite sequence of identical jobs that are activated arbitrarily

‣ Or may consist of a finite number of jobs that are activated arbitrarily

‣ Or may consist of just a single job

‣ Example: Event-triggered tasks, interrupts, etc.

τi,k kth τi

22



Recap: Scenario #1
• Given 

‣ Set of  aperiodic jobs 


‣ Synchronous arrival times 

‣ Uniprocessor system


• Objective 
‣ Minimize the maximum lateness 


• Constraints 
‣ No job must misses its deadline


• Scheduling policy? 
‣ Jackson’s algorithm: Execute the tasks in order of non-decreasing deadlines

n J = {J1, J2, …, Jn}
∀i : ai = 0

Lmax = maxi ( fi − di)

23



24

Jackson’s Algorithm is Optimal w.r.t. minimizing Lmax
(1) For simplicity, assume that each deadline is unique: 

(2) Let Jackson’s Algorithm produce schedule  with maximum lateness 

(3) Suppose there exists another algorithm A that produces schedule  with maximum lateness 


(I) Since , there exists at least two jobs  and  such that:

(i)  immediately precedes  in schedule  (as shown in the figure)

(ii) and 


(4) We transposition ( ) schedule  to  by interchanging the time slots of  and 

(5) From the figure,  is the maximum among all four lateness values illustrated, since 


(I) 

(II) 

(III) 


(6) First case: The maximum lateness in  corresponded to , i.e., 

(I) From (5) above, since the maximum lateness of  and  in  can only reduce w.r.t. ,

(II) Thus,  in the first case


(7) Second case: The maximum lateness in  corresponded to some  (grey region in the figure), i.e., 

(I) The schedule of all other jobs and their maximum lateness remains intact in 

(II) Thus,  in the second case


(8) From (6) and (7), transposition  cannot result in a higher 

(9) We can perform a finite number of such transpositions, such that 

(10)  From (4)-(8), 

(11)  This contradicts (3). Hence, Jackson’s algorithm is indeed optimal and results in the minimum possible 

∀i, k, di ≠ dk
σJackson Lmax(σJackson)

σA ≠ σJackson Lmax(σA) < Lmax(σJackson)
σA ≠ σJackson Ja Jb
Jb Ja σA

da < db
⇝ σA σ′ A Ja Jb

Lmax, a
−Lmax, a < − L′ max, a
−Lmax, a < − L′ max, b
−Lmax, a < − Lmax, b

σA Ja Lmax(σA) = Lmax, a
Ja Jb σ′ A Lmax, a

Lmax(σA) ≥ Lmax(σ′ A)
σA Jc Lmax(σA) = Lmax, c > Lmax, a

σ′ A
Lmax(σA) = Lmax(σ′ A)

σA ⇝ σ′ A Lmax
σA ⇝ σ′ A ⇝ σ′ ′ A ⇝ … ⇝ σJackson

Lmax(σA) ≥ Lmax(σ′ A) ≥ Lmax(σ′ ′ A) ≥ … ≥ Lmax(σJackson)
Lmax



Scenario #1, Example #2

• Classroom assignment

‣ Can you draw the schedule?

‣ Is the schedule feasible? Why?

‣ How can we guarantee feasibility?

25



Scenario #1

• Jackon’s algorithm is optimal with respect to  for all job sets, but it 
does not guarantee feasibility for all job sets!


• However, Jackson’s algorithm guarantees feasibility if the job set  
satisfies the following conditions.

Lmax

J

∀i = 1, …, n
i

∑
k=1

Ck ≤ di .

Schedulability analysis

Scheduling policy

Design time claim: 
“job set  is (not) schedulable using Jackson’s algorithm.”J

Yes? 
No?

26



Scenario #2
• Given 

‣ Set of  aperiodic jobs 


‣ Arbitrary arrival times 

‣ Uniprocessor system with preemption


• Objective 
‣ Minimize the maximum lateness 


• Constraints 
‣ No job must misses its deadline


• Scheduling policy? 
‣ Earliest Deadline First (EDF): At any instant, execute a ready task with the earliest absolute deadline


- If there is a tie, execute the task with the smaller ID, e.g., if , then execute  before 

n J = {J1, J2, …, Jn}
∀i, k : ai ≠ ak

Lmax = maxi ( fi − di)

d1 = d2 J1 J2

27



Scenario #2, Example #1
• Classroom assignment

‣ Can you draw the schedule?

‣ Is the schedule feasible? Why?


‣ What is ?


‣ Is this the minimum possible ?
Lmax

Lmax

28



29

Jackson’s Algorithm is Optimal w.r.t. minimizing Lmax
(1) For simplicity, assume that each deadline is unique: 

(2) Let Jackson’s Algorithm produce schedule  with maximum lateness 

(3) Suppose there exists another algorithm A that produces schedule  with maximum lateness 


(I) Since , there exists at least two jobs  and  such that:

(i)  immediately precedes  in schedule  (as shown in the figure)

(ii) and 


(4) We transposition ( ) schedule  to  by interchanging the time slots of  and 

(5) From the figure,  is the maximum among all four lateness values illustrated, since 


(I) 

(II) 

(III) 


(6) First case: The maximum lateness in  corresponded to , i.e., 

(I) From (5) above, since the maximum lateness of  and  in  can only reduce w.r.t. ,

(II) Thus,  in the first case


(7) Second case: The maximum lateness in  corresponded to some  (grey region in the figure), i.e., 

(I) The schedule of all other jobs and their maximum lateness remains intact in 

(II) Thus,  in the second case


(8) From (6) and (7), transposition  cannot result in a higher 

(9) We can perform a finite number of such transpositions, such that 

(10)  From (4)-(8), 

(11)  This contradicts (3). Hence, Jackson’s algorithm is indeed optimal and results in the minimum possible 

∀i, k, di ≠ dk
σJackson Lmax(σJackson)

σA ≠ σJackson Lmax(σA) < Lmax(σJackson)
σA ≠ σJackson Ja Jb
Jb Ja σA

da < db
⇝ σA σ′ A Ja Jb

Lmax, a
−Lmax, a < − L′ max, a
−Lmax, a < − L′ max, b
−Lmax, a < − Lmax, b

σA Ja Lmax(σA) = Lmax, a
Ja Jb σ′ A Lmax, a

Lmax(σA) ≥ Lmax(σ′ A)
σA Jc Lmax(σA) = Lmax, c > Lmax, a

σ′ A
Lmax(σA) = Lmax(σ′ A)

σA ⇝ σ′ A Lmax
σA ⇝ σ′ A ⇝ σ′ ′ A ⇝ … ⇝ σJackson

Lmax(σA) ≥ Lmax(σ′ A) ≥ Lmax(σ′ ′ A) ≥ … ≥ Lmax(σJackson)
Lmax

Do these arguments 
work for EDF?



30

(1) For simplicity, assume that each job has a unit execution time, i.e., 

(2) Let  be the schedule produced by EDF, and let  be the schedule produced by another algorithm 

(3) We will show that EDF is optimal because


(I)  can be transformed into  using a finite number of transpositions ( ), that is, 

(II) After each transposition, the maximum lateness cannot increase

∀i, Ci = 1
σEDF σA ≠ σEDF A

σA σEDF ⇝ σA ⇝ σ′ A ⇝ σ′ ′ A ⇝ … ⇝ σEDF

EDF is Optimal w.r.t. minimizing  [1/3]Lmax



31

EDF is Optimal w.r.t. 
minimizing  [2/3]Lmax

(4) How do we define a transposition ( ) in the case of EDF?

(I) Since , there exists a time  such that


(i)  but , 

(II) Let  and  


(i) Can  or ?

-  and  is not possible …

-  and  is possible …


(III) Suppose that  is executed in schedule  at time 

(i) What if ’s execution in schedule  has already 

completed before ? Not possible …

(IV) Transposition 


(i) Exchange the time slices at  and  in 
schedule  to obtain 

⇝
σA ≠ σEDF t
σA(t) ≠ σEDF(t) ∀t− < t σA(t−) = σEDF(t−)

σEDF(t) = Je σA(t) = Ja
σEDF(t) = 0 σA = 0

σEDF(t) = 0 σA ≠ 0
σEDF(t) ≠ 0 σA = 0

Je σA t+ > t
Je σA

t
σA ⇝ σ′ A

[t, t + 1) [t+, t+ + 1)
σA σ′ A

Ja

Time0
σA

t + 1
t

Je

t+

t+ + 1

−Le

−La

JaJe

Time0

σ′ A

t + 1
t t+

t+ + 1

−L′ a

−L′ e

Je

Time0
σEDF

de da

t + 1
t

de da

de da



32

EDF is Optimal w.r.t. 
minimizing  [3/3]Lmax
(5) Proof of (3)(I), “  can be transformed into  using a finite number of 

transpositions ( ), that is, ”

(I) After the transposition at time , the prefixes of schedules  and  

corresponding to time slice  are identical

(II) The length of prefixes identical in  and  increases after every 

transposition

(III) Since the number of jobs is finite, beyond a certain time , no jobs are 

pending, and thus , 

σA σEDF
⇝ σA ⇝ σ′ A ⇝ σ′ ′ A ⇝ … ⇝ σEDF

t σA σEDF
[0, t + 1)

σA σEDF

tend
∀t′ > tend σA(t′ ) = σEDF(t′ ) = 0

(6) Proof of (3)(II), “After each transposition, the maximum lateness cannot increase” 
(I) For the special case (  and ), the proof is trivial … 
(II) For the normal case (  and )


(i) If the maximum lateness in  corresponded to 

- Since , transposition  can 

only reduce the maximum lateness from  to 

(ii) If the maximum lateness in  corresponded to some other job 


- Transposition  has no effect on the maximum lateness

σEDF(t) ≠ 0 σA = 0
σEDF(t) ≠ 0 σA ≠ 0

σA Je
Le = max(Le, La, L′ e, L′ a) σA ⇝ σ′ A

Le max(L′ a, L′ e)
σA Jc

σA ⇝ σ′ A

Ja

Time0
σA

t + 1
t

Je

t+

t+ + 1

−Le

−La

JaJe

Time0

σ′ A

t + 1
t t+

t+ + 1

−L′ a

−L′ e

Je

Time0
σEDF

de da

t + 1
t

de da

de da



Runtime Schedulability Test for EDF
• Arbitrary arrival times

‣ Schedulability test has to be done dynamically, when a new task arrives


• Jobs  are activated before , new job  arrives at 

‣ Is the system still schedulable?

J = {J1, J2, …, Jn} t Jn+1 t



Scenario #3
• Given 

‣ Set of  aperiodic jobs 


‣ Arbitrary arrival times 

‣ Uniprocessor system with no preemption


• Objective 
‣ Minimize the maximum lateness 


• Constraints 
‣ No job must misses its deadline


• Scheduling policy? 
‣ Earliest Deadline First (EDF)?

n J = {J1, J2, …, Jn}
∀i, k : ai ≠ ak

Lmax = maxi ( fi − di)

34



Scenario #3, Example #1

35

• Classroom assignment

‣ Can you draw the EDF schedule?

‣ Is the schedule feasible? Why?


‣ What is ?


‣ Is this the minimum possible ? 
‣ EDF is work-conserving, hence is not optimal 
‣ Why was this not a problem earlier?

‣ Alternative algorithms?


- Exhaustive search, heuristics

Lmax

Lmax

1012


