Global and Partitioned Scheduling CPEN 432 Real-Time System Design

Arpan Gujarati University of British Columbia

Partitioned Scheduling

Reasonable Algorithms

- \bullet only when the task does not fit into any processor on the platform
- When a task is considered for assignment, to which processor does it get assigned?
 - on which it fits
 - **Worst-fit (WF):** the task is assigned to the processor with the maximum remaining capacity
 - utilization (i.e., on which it fits)
- In what order are the tasks considered for assignment?
 - Decreasing (D): tasks are considered in non-increasing order of their utilizations
 - **Increasing (I):** tasks are considered in non-decreasing order of their utilizations
 - **Unordered (c):** tasks are considered in arbitrary order (i.e., tasks need not be sorted prior to allocation)

Reasonable allocation (RA): An algorithm that fails to allocate a task to a multiprocessor platform

First-fit (FF): the processors are considered ordered in some manner and the task is assigned to the first processor

Best-fit (BF): the task is assigned to the processor with the minimum remaining capacity exceeding its own

Nine different heuristics: {FF, WF, BF} x {D, I, ε}, i.e., FFD, FFI, FF, WFD, WFI, WF, BFD, BFI, BF

Utilization Bounds

- Let α denote an upper bound on the per-task utilization, and $\beta = \lfloor 1/\alpha \rfloor$
- For any reasonable allocation algorithm, its utilization bound U_h is bounded as follows: $m - (m - 1)\alpha \leq U_h \leq (\beta m + 1)/(\beta + 1)$
- WF and WFI: $U_h = m (m 1)\alpha$
- FF, FFI, FFD, BF, BFI, BFD, and WFD: $U_h = (\beta m + 1)/(\beta + 1)$
- What if α is unknown?

Reasonable Algorithms

- Nine different heuristics: **{FF, WF, BF} x {D, I, ε}**
- Each can be implemented extremely efficiently
 - Sorting *n* tasks: $O(n \log n)$
 - Choosing a fit for any given task: O(m)
- - "... it seems reasonable to actually run the partitioning algorithm, rather than regarding the efficacy of the algorithm." [Emphasis added]

• From Multiprocessor Scheduling for Real-Time Systems (Baruah et al., 2015) computing the utilization of the task system and comparing against the algorithm's (sufficient, not exact) utilization bound ... from the perspective of actually implementing a real-time system using partitioned scheduling, there is **no particular significance to using a** utilization bound formula rather than actually trying out the algorithms. Rather, the major benefit to determining these bounds arises from the insight such bounds may provide

Speedup Factors

- Consider partitioning algorithms $\mathscr{A}_{optimal}$ (optimal) and $\mathscr{A}_{heuristic}$ (approximate)
- Speedup factor of $\mathscr{A}_{heuristic}$
 - can be partitioned by $\mathscr{A}_{heuristic}$ upon a platform in which each processor is f times faster
- Nine different heuristics: {FF, WF, BF} x {D, I, \bullet • $f_{FFD, WFD, BFD} = \frac{4}{3} - \frac{1}{3m}, f_{WF, WFI} = 2 - \frac{2}{m}, f_{FF,}$
- More expressive than utilization bounds
 - utilizations (i.e., FFD, WFD, BFD), partitioning is easier

• The smallest number f such that any task system that can be partitioned by $\mathscr{A}_{optimal}$ upon a particular platform

$$\varepsilon\}$$

c, *FFI*, *BF*, *BFI* = 2 - $\frac{2}{m+1}$

As observed in practice, the speedup factors show that when tasks are considered in non-increasing order of their

• Question: What is the speedup factor of algorithm $\mathscr{A}'_{optimal}$ that is also an optimal algorithm?

A PTAS for Partitioning

- Optimal partitioning is NP-hard
- Common heuristics have a speedup factor of 4/3 or 2 as $m \to \infty$
- Is there a Polynomial-Time Approximation Scheme (PTAS) that can achieve a speedup factor of $1 + \epsilon$, for any positive constant ϵ ?

 - Of course, we will need faster processors in order to run the tasks :-)
- Next few slides
 - PTAS for partitioning proposed by <u>Hochbaum and Shmoys (1987)</u>
 - Implementation by Chattopadhyay and Baruah (2011)

If yes, we can partition a task set to any desired degree of accuracy in polynomial time

Key Ideas [1/5]

- Choosing ϵ
 - PTAS requires processors that are $1 + \epsilon$ times faster
 - We cannot provide faster processors

But we can assume that $\mathscr{A}_{optimal}$ has only

- Thus, $U_{loss} = 1 \frac{1}{1+\epsilon} = \frac{\epsilon}{1+\epsilon} = 0.1$ (i.e. 10%), which yields $\epsilon = \frac{1}{9}$

$$\left(\frac{1}{1+\epsilon}\right)^{th}$$
 of each processor available

- Thus, if $\mathscr{A}_{optimal}$ can partition a task set on *m* processors with an available utilization of $(1/1 + \epsilon)$ on each processor, then \mathscr{A}_{PTAS} can partition the task set on m processors with full utilization available Suppose we are willing to tolerate a loss of up to 10% of the processor utilization

Key Ideas [2/5]

- Bucketing utilization values

 - - Where $v_i = \epsilon \times (1 + \epsilon)^j \le 1$
 - Any utilization $v_i < u_i < v_{i+1}$ is inflated to the next valid utilization v_{i+1}

• For example, $V(\epsilon = 0.3) = \{0.3, 0.39, 0.507, 0.6591, 0.8568\}$

• The utilization of a task u_i may vary anywhere from 0 to 1, i.e., infinitely many possibilities • Instead, we consider only a finite number of points $V(\epsilon) = (v_0, v_1, v_2, v_3, ...)$ as valid utilizations

Key Ideas [3/5]

- Enumerate all maximal single-processor configurations
 - Each configuration identifies a vector
 - Where x_i identifies the number of tasks with utilization $V(\epsilon)[i]$
 - Such that $x_1v_1 + x_2v_2 + ... x_{|V(\epsilon)|}v_{|V(\epsilon)|} \le 1$
 - The configuration is maximal if no other task can be further added

Config. ID	0.3000	0.3900	0.5070	0.6591	0.8568
1	3	0	0	0	0
2	2	1	0	0	0
3	1	0	1	0	0
4	1	0	0	1	0
5	0	2	0	0	0
6	0	1	1	0	0
7	0	0	0	0	1

I.e., no x_i can be incremented without violating the above inequality ----

$$\langle x_1, x_2, \dots, x_{|V(\epsilon)|} \rangle$$

I.e., each configuration identifies a set of tasks that can be scheduled on a uniprocessor

```
st seven maximal single-processor
nfigurations for \epsilon = 0.3
```

Key Ideas [4/5]

• Enumerate all maximal multi-processor configurations

_						
	0.3	0.39	0.507	0.6591	0.8568	Single-proc. ID's
	3	2	1	2	0	[4 4 5 3]
	3	4	2	0	0	[6 6 5 1]
	0	3	3	0	1	[6667]
	4	1	1	1	1	[7 4 3 2]
	4	0	1	3	0	[4 4 4 3]
_						

Config. ID	0.3000	0.3900	0.5070	0.6591	0.8568
1	3	0	0	0	0
2	2	1	0	0	0
3	1	0	1	0	0
4	1	0	0	1	0
5	0	2	0	0	0
6	0	1	1	0	0
7	0	0	0	0	1
	•				

```
Example configurations for m = 4
and \epsilon = 0.3 (out of 140)
```

Just seven maximal single-processor configurations for $\epsilon = 0.3$

Key Ideas [5/5]

- Task assignment
 - Step 1: Round up task utilizations to values in $V(\epsilon = 0.3) = \{0.3, 0.39, 0.507, 0.6591, 0.8568\}$
 - Step 2: Ignore "small" tasks with utilization less than $\epsilon/1 + \epsilon$

 - Step 3: For the remaining "large" tasks, identify a matching configuration from the multi-processor lookup table Step 4: Assign these "large" tasks to appropriate processors based on the chosen configuration Step 5: Assign each "small" task to any processor upon which it fits

0.3	0.39	0.507	0.6591	0.8568	Single-proc. ID's
3	2	1	2	0	[4 4 5 3]
3	4	2	0	0	[6 6 5 1]
0	3	3	0	1	[6667]
4	1	1	1	1	[7 4 3 2]
4	0	1	3	0	[4 4 4 3]
				_	

Just seven maximal single-processor configurations for $\epsilon = 0.3$

$$\frac{1}{5}, \frac{1}{5}, \frac{1}{3}, \frac{7}{20}, \frac{9}{25}, \frac{2}{5}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}$$

Example task set

Example configurations for m = 4and $\epsilon = 0.3$ (out of 140)

Config. ID	0.3000	0.3900	0.5070	0.6591	0.8568
1	3	0	0	0	0
2	2	1	0	0	0
3	1	0	1	0	0
4	1	0	0	1	0
5	0	2	0	0	0
6	0	1	1	0	0
7	0	0	0	0	1
· · · · · · · · · · · · · · · · · · ·	•				

Global Scheduling

Global vs. Partitioned: Pros & Cons

Global scheduling

- Automatic load balancing
- ✓ Lower avg. response time
- ✓ Simpler implementation
- ✓ Optimal schedulers exist
- ✓ More efficient reclaiming
- X Migration costs
- ✗ Inter-core synchronization
- ✗ Loss of cache affinity
- X Weak scheduling framework

Partitioned scheduling

- Supported by automotive industry (e.g., AUTOSAR)
 - No migrations
 - ✓ Isolation between cores
 - Mature scheduling framework
 - X Cannot exploit unused capacity
 - × Rescheduling not convenient
 - \thickapprox NP-hard allocation

- an m-processor platform
 - Tasks T_1, \dots, T_m have parameters $(e_i = 1, P_i = P)$
 - Task T_{m+1} has parameters $e_{m+1} = P_{m+1} = P + 1$

•
$$U = m\left(\frac{1}{P}\right) + \frac{P+1}{P+1} = \frac{m}{P} + 1 \qquad \left[\lim_{P \uparrow \infty} U = \right]$$

- What happens if we increase the number of processors?

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon

- an m-processor platform
 - Tasks T_1, \ldots, T_m have parameters $(e_i = 1, P_i = P)$
 - Task T_{m+1} has parameters $e_{m+1} = P_{m+1} = P + 1$

•
$$U = m\left(\frac{1}{P}\right) + \frac{P+1}{P+1} = \frac{m}{P} + 1 \qquad \left[\lim_{P \uparrow \infty} U = \right]$$

- What happens if we increase the number of processors?

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless of the number of processors.

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon

- an m-processor platform
 - Tasks T_1, \ldots, T_m have parameters $(e_i = 1, P_i = P)$
 - Task T_{m+1} has parameters $e_{m+1} = P_{m+1} = P + 1$

•
$$U = m\left(\frac{1}{P}\right) + \frac{P+1}{P+1} = \frac{m}{P} + 1 \qquad \left[\lim_{P \uparrow \infty} U = \right]$$

- What happens if we increase the number of processors?

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless of the number of processors.

• **Question:** Is this task set partitioned-schedulable?

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon

- an m-processor platform
 - Tasks T_1, \ldots, T_m have parameters $(e_i = 1, P_i = P)$
 - Task T_{m+1} has parameters $e_{m+1} = P_{m+1} = P + 1$

•
$$U = m\left(\frac{1}{P}\right) + \frac{P+1}{P+1} = \frac{m}{P} + 1$$
 $\left[\lim_{P \uparrow \infty} U = \right]$

- What happens if we increase the number of processors?

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless of the number of processors.

- **Question:** Is this task set partitioned-schedulable?
 - Answer: Yes! for example, when m < P, we need only two processors!

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon

- Dhall's Effect shows the limitation of global EDF and RM: both utilization bounds tend to 1, independently of the value of m.
- Researchers lost interest in global scheduling for ~25 years, since late 1990s.
- Such a limitation is related to EDF and RM, not to global scheduling in general

Global Scheduling: Negative Results

Weak theoretical framework

- Unknown critical instant
- Global EDF is not optimal
- Any global job-fixed (or task-dynamic) priority scheduler is not optimal
- Optimality only for implicit deadlines
- Many sufficient tests (most of them incomparable)

Recap: Response-Time Analysis

Fixed-priority scheduling (RM, DM, ...) with preemptions ullet

• Tasks
$$\tau = \{\tau_1, \tau_2, ..., \tau_n\}$$

- Each task τ_i has time period T_i , completion time C_i , relative deadline D_i
- Tasks IDs are used as priorities

$$R_i = C_i + \sum_{a < i} \left(\left\lceil \frac{R_i}{T_a} \right\rceil \cdot C_a \right)$$

- Verify that either
 - $\forall \tau_i \in \tau : R_i \leq D_i$ (the task set is schedulable), or
 - $\exists \tau_k \in \tau : R_k > D_k$ (the task set is not schedulable)

• Solve the following recurrence for each τ_i to obtain its worst-case response time R_i

RTA for Global Scheduling

Theorem 7 (RTA for FP) An upper bound on the respontime of a task τ_k in a multiprocessor system scheduled w fixed priority can be derived by the fixed point iteration on the value R_k^{ub} of the following expression, starting w $R_k^{ub} = C_k$:

$$R_k^{ub} \leftarrow C_k + \left\lfloor \frac{1}{m} \sum_{i < k} \hat{I}_k^i(R_k^{ub}) \right\rfloor$$

with $\hat{I}_{k}^{i}(R_{k}^{ub}) = \min(\mathfrak{W}_{i}(R_{k}^{ub}), R_{k}^{ub} - C_{k} + 1).$

$$\mathfrak{W}_i(L) = N_i(L)C_i + \min(C_i, L + D_i - C_i - N_i(L)T_i)$$

$$N_i(L) = \left\lfloor \frac{L + D_i - C_i}{T_i} \right\rfloor$$

	[
nse		Symbol	Description
vith		m	Number of processors in the platform
ion		n	Number of tasks in the task set
vith		au	Task set
		$ au_k$	k -th task $\in au$
		J_k^j	<i>j</i> -th job of task $ au_k$
		C_k	Worst-case computation time of τ_k
(7)		D_k	Relative deadline of τ_k
(\prime)		T_k	Period or minimum interarrival time of τ_k
		r_k^j	Release time of job J_k^j
		f_k^j	Finishing time of job J_k^j
		d_k^j	Absolute deadline of job J_k^j
		s_k	$\min_{J_k^j \in \tau} (d_k^j - f_k^j)$, i.e. minimum slack of τ_k
		R_k	$\max_{J_k^j \in \tau}^{\kappa} (f_k^j - r_k^j)$, ie. response time of τ_k
(4)		U_k	C_k/T_k , utilization of τ_k
(-)		U_{\max}	$\max_{\tau_i \in \tau} (U_i)$
		$U_{ m tot}$	$\sum_{\tau_i \in \tau} (U_i)$, ie. total utilization of task set τ
		λ_k	C_k/D_k , density of τ_k
		$\lambda_{ ext{max}}$	$\max_{\tau_i \in \tau} (\lambda_i)$
		$\lambda_{ m tot}$	$\sum_{\tau_i \in \tau} (\lambda_i)$, ie. total density of task set τ
		$I_k(a,b)$	Interference on τ_k in interval $[a, b)$
		$I_k^i(a,b)$	Interference of τ_i on τ_k in interval $[a, b)$
		$arepsilon_k(a,b)$	Carry-in of τ_k in interval $[a, b)$
		$z_k(a,b)$	Carry-out of τ_k in interval $[a, b)$
1		$W_k(a,b)$	Worst-case workload of τ_k in $[a, b)$

Key Ideas $I_k(a,b) \ge x \iff \sum \min(I_k^i(a,b),x) \ge mx$ $i \neq k$

- We don't have a critical instant where to start the analysis
- A simple valid RTA

Theorem 1 (from [24, 4, 17]) Given a task set τ scheduled with fixed priority, a bound on the maximum response time R_k^{max} of a task $\tau_k \in \tau$ is given by the fixed point reached, iteratively repeating the following operation with initial value $R_k^{max} = C_k$:

$$R_k^{max} \leftarrow C_k + \frac{1}{m} \sum_{\tau_j \in hp(k)} \left(\left\lceil \frac{R_k^{max}}{T_j} \right\rceil C_j + C_j \right)$$

where hp(k) is the set of tasks with priority higher then τ_k 's.

(2)

Theorem 7 (RTA for FP) An upper bound on the respontime of a task τ_k in a multiprocessor system scheduled w fixed priority can be derived by the fixed point iteration on the value R_k^{ub} of the following expression, starting w $R_k^{ub} = C_k$:

$$R_k^{ub} \leftarrow C_k + \left\lfloor \frac{1}{m} \sum_{i < k} \hat{I}_k^i(R_k^{ub}) \right\rfloor$$

with $\hat{I}_{k}^{i}(R_{k}^{ub}) = \min(\mathfrak{W}_{i}(R_{k}^{ub}), R_{k}^{ub} - C_{k} + 1).$

$$\mathfrak{W}_i(L) = N_i(L)C_i + \min(C_i, L + D_i - C_i - N_i(L)T_i)$$

$$N_i(L) = \left\lfloor \frac{L + D_i - C_i}{T_i} \right\rfloor$$

	[
nse		Symbol	Description
vith		m	Number of processors in the platform
ion		n	Number of tasks in the task set
vith		au	Task set
		$ au_k$	k -th task $\in au$
		J_k^j	<i>j</i> -th job of task $ au_k$
		C_k	Worst-case computation time of τ_k
(7)		D_k	Relative deadline of τ_k
(\prime)		T_k	Period or minimum interarrival time of τ_k
		r_k^j	Release time of job J_k^j
		f_k^j	Finishing time of job J_k^j
		d_k^j	Absolute deadline of job J_k^j
		s_k	$\min_{J_k^j \in \tau} (d_k^j - f_k^j)$, i.e. minimum slack of τ_k
		R_k	$\max_{J_k^j \in \tau}^{\kappa} (f_k^j - r_k^j)$, ie. response time of τ_k
(4)		U_k	C_k/T_k , utilization of τ_k
(-)		U_{\max}	$\max_{\tau_i \in \tau} (U_i)$
		$U_{ m tot}$	$\sum_{\tau_i \in \tau} (U_i)$, ie. total utilization of task set τ
		λ_k	C_k/D_k , density of τ_k
		$\lambda_{ ext{max}}$	$\max_{\tau_i \in \tau} (\lambda_i)$
		$\lambda_{ m tot}$	$\sum_{\tau_i \in \tau} (\lambda_i)$, ie. total density of task set τ
		$I_k(a,b)$	Interference on τ_k in interval $[a, b)$
		$I_k^i(a,b)$	Interference of τ_i on τ_k in interval $[a, b)$
		$arepsilon_k(a,b)$	Carry-in of τ_k in interval $[a, b)$
		$z_k(a,b)$	Carry-out of τ_k in interval $[a, b)$
1		$W_k(a,b)$	Worst-case workload of τ_k in $[a, b)$

Key Ideas $I_k(a,b) \ge x \iff \sum_{i \ne k} \min(I_k^i(a,b), x) \ge mx$

Theorem 3 A task τ_k has a response time upper bounded by R_k^{ub} if

 $\sum_{i \neq k} \min \left(I_k^i(r_k^*, r_k^* + R_k^{ub}), R_k^{ub} - C_k + 1 \right) < m(R_k^{ub} - C_k + 1)$

Proof: If the inequality holds for τ_k , from Lemma 1 we have

$$I_k(r_k^*, r_k^* + R_k^{ub}) < (R_k^{ub} - C_k + 1)$$

therefore J_k^* will be interfered for at most $R_k^{ub} - C_k$ time units. From the definition of interference, it follows that J_k^* (and therefore every other job of τ_k) will complete at most at time R_k^{ub} .

Theorem 7 (RTA for FP) An upper bound on the respontime of a task τ_k in a multiprocessor system scheduled w fixed priority can be derived by the fixed point iteration on the value R_k^{ub} of the following expression, starting w $R_k^{ub} = C_k$:

$$\begin{split} R_k^{ub} \leftarrow C_k + \left\lfloor \frac{1}{m} \sum_{i < k} \hat{I}_k^i(R_k^{ub}) \right\rfloor \\ \text{with} \quad \hat{I}_k^i(R_k^{ub}) = \min(\mathfrak{W}_i(R_k^{ub}), R_k^{ub} - C_k + 1). \end{split}$$

$$\mathfrak{W}_i(L) = N_i(L)C_i + \min(C_i, L + D_i - C_i - N_i(L)T_i)$$

$$N_i(L) = \left\lfloor \frac{L + D_i - C_i}{T_i} \right\rfloor$$

	[
nse		Symbol	Description
vith		m	Number of processors in the platform
ion		n	Number of tasks in the task set
vith		au	Task set
		$ au_k$	k -th task $\in au$
		J_k^j	<i>j</i> -th job of task $ au_k$
		C_k	Worst-case computation time of τ_k
(7)		D_k	Relative deadline of τ_k
(\prime)		T_k	Period or minimum interarrival time of τ_k
		r_k^j	Release time of job J_k^j
		f_k^j	Finishing time of job J_k^j
		d_k^j	Absolute deadline of job J_k^j
		s_k	$\min_{J_k^j \in \tau} (d_k^j - f_k^j)$, ie. minimum slack of τ_k
		R_k	$\max_{J_k^j \in \tau}^{\kappa} (f_k^j - r_k^j)$, ie. response time of τ_k
(4)		U_k	C_k/T_k , utilization of τ_k
(-)		U_{\max}	$\max_{\tau_i \in \tau} (U_i)$
		$U_{ m tot}$	$\sum_{\tau_i \in \tau} (U_i)$, ie. total utilization of task set τ
		λ_k	C_k/D_k , density of τ_k
		$\lambda_{ ext{max}}$	$\max_{\tau_i \in \tau} (\lambda_i)$
		$\lambda_{ m tot}$	$\sum_{\tau_i \in \tau} (\lambda_i)$, ie. total density of task set τ
		$I_k(a,b)$	Interference on τ_k in interval $[a, b)$
		$I_k^i(a,b)$	Interference of τ_i on τ_k in interval $[a, b)$
		$arepsilon_k(a,b)$	Carry-in of τ_k in interval $[a, b)$
		$z_k(a,b)$	Carry-out of τ_k in interval $[a, b)$
1		$W_k(a,b)$	Worst-case workload of τ_k in $[a, b)$

Key Ideas

More accurate estimation of a task's workload

$$\mathfrak{W}_i(L) = N_i(L)C_i + \min(C_i, L + D_i - C_i - N_i(L)T_i) \quad (4)$$
$$N_i(L) = \left\lfloor \frac{L + D_i - C_i}{T_i} \right\rfloor$$

Theorem 7 (RTA for FP) An upper bound on the respontime of a task τ_k in a multiprocessor system scheduled w fixed priority can be derived by the fixed point iteration on the value R_k^{ub} of the following expression, starting w $R_k^{ub} = C_k$:

$$R_k^{ub} \leftarrow C_k + \left\lfloor \frac{1}{m} \sum_{i < k} \hat{I}_k^i(R_k^{ub}) \right\rfloor$$

with $\hat{I}_{k}^{i}(R_{k}^{ub}) = \min(\mathfrak{W}_{i}(R_{k}^{ub}), R_{k}^{ub} - C_{k} + 1).$

$$\mathfrak{W}_i(L) = N_i(L)C_i + \min(C_i, L + D_i - C_i - N_i(L)T_i)$$

$$N_i(L) = \left\lfloor \frac{L + D_i - C_i}{T_i} \right\rfloor$$

	[
nse		Symbol	Description
vith		m	Number of processors in the platform
ion		n	Number of tasks in the task set
vith		au	Task set
		$ au_k$	k -th task $\in au$
		J_k^j	<i>j</i> -th job of task $ au_k$
		C_k	Worst-case computation time of τ_k
(7)		D_k	Relative deadline of τ_k
(\prime)		T_k	Period or minimum interarrival time of τ_k
		r^j_k	Release time of job J_k^j
		f_k^j	Finishing time of job J_k^j
		d_k^j	Absolute deadline of job J_k^j
		s_k	$\min_{J_k^j \in \tau} (d_k^j - f_k^j)$, i.e. minimum slack of τ_k
		R_k	$\max_{J_k^j \in \tau}^{\kappa} (f_k^j - r_k^j)$, ie. response time of τ_k
(4)		U_k	C_k/T_k , utilization of τ_k
(-)		U_{\max}	$\max_{\tau_i \in \tau} (U_i)$
		$U_{ m tot}$	$\sum_{\tau_i \in \tau} (U_i)$, ie. total utilization of task set τ
		λ_k	C_k/D_k , density of τ_k
		$\lambda_{ ext{max}}$	$\max_{\tau_i \in \tau} (\lambda_i)$
		$\lambda_{ m tot}$	$\sum_{\tau_i \in \tau} (\lambda_i)$, ie. total density of task set τ
		$I_k(a,b)$	Interference on τ_k in interval $[a, b)$
		$I_k^i(a,b)$	Interference of τ_i on τ_k in interval $[a, b)$
		$arepsilon_k(a,b)$	Carry-in of τ_k in interval $[a, b)$
		$z_k(a,b)$	Carry-out of τ_k in interval $[a, b)$
1		$W_k(a,b)$	Worst-case workload of τ_k in $[a, b)$

Distributed Real-Time Systems

Event-Driven and Dependent Periodic Tasks

