
Global and Partitioned Scheduling
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1

Partitioned Scheduling

Reasonable Algorithms
• Reasonable allocation (RA): An algorithm that fails to allocate a task to a multiprocessor platform

only when the task does not fit into any processor on the platform

• When a task is considered for assignment, to which processor does it get assigned?

‣ First-fit (FF): the processors are considered ordered in some manner and the task is assigned to the first processor

on which it fits

‣ Worst-fit (WF): the task is assigned to the processor with the maximum  

remaining capacity

‣ Best-fit (BF): the task is assigned to the processor with the minimum remaining capacity exceeding its own

utilization (i.e., on which it fits)

• In what order are the tasks considered for assignment?

‣ Decreasing (D): tasks are considered in non-increasing order of their utilizations

‣ Increasing (I): tasks are considered in non-decreasing order of their utilizations

‣ Unordered (ε): tasks are considered in arbitrary order (i.e., tasks need not be sorted prior to allocation)

• Nine different heuristics: {FF, WF, BF} x {D, I, ε}, i.e., FFD, FFI, FF, WFD, WFI, WF, BFD, BFI, BF

Utilization Bounds
• Let denote an upper bound on the per-task utilization, and

• For any reasonable allocation algorithm, its utilization bound is
bounded as follows:

• WF and WFI:

• FF, FFI, FFD, BF, BFI, BFD, and WFD:

• What if is unknown?

α β = ⌊1/α⌋

Ub
m − (m − 1)α ≤ Ub ≤ (βm + 1)/(β + 1)

Ub = m − (m − 1)α

Ub = (βm + 1)/(β + 1)

α

Reasonable Algorithms
• Nine different heuristics: {FF, WF, BF} x {D, I, ε}

• Each can be implemented extremely efficiently

‣ Sorting tasks:

‣ Choosing a fit for any given task:

• From Multiprocessor Scheduling for Real-Time Systems (Baruah et al., 2015)

‣ “… it seems reasonable to actually run the partitioning algorithm, rather than

computing the utilization of the task system and comparing against the algorithm’s
(sufficient, not exact) utilization bound … from the perspective of actually implementing a
real-time system using partitioned scheduling, there is no particular significance to using a
utilization bound formula rather than actually trying out the algorithms. Rather, the
major benefit to determining these bounds arises from the insight such bounds may provide
regarding the efficacy of the algorithm.” [Emphasis added]

n O(n log n)
O(m)

Speedup Factors
• Consider partitioning algorithms (optimal) and (approximate)

• Speedup factor of

‣ The smallest number such that any task system that can be partitioned by upon a particular platform

can be partitioned by upon a platform in which each processor is times faster

• Nine different heuristics: {FF, WF, BF} x {D, I, ε}

‣ , ,

• More expressive than utilization bounds

‣ As observed in practice, the speedup factors show that when tasks are considered in non-increasing order of their

utilizations (i.e., FFD, WFD, BFD), partitioning is easier

• Question: What is the speedup factor of algorithm that is also an optimal algorithm?

𝒜optimal 𝒜heuristic

𝒜heuristic
f 𝒜optimal
𝒜heuristic f

fFFD, WFD, BFD =
4
3

−
1

3m
fWF, WFI = 2 −

2
m

fFF, FFI, BF, BFI = 2 −
2

m + 1

𝒜′ optimal

A PTAS for Partitioning
• Optimal partitioning is NP-hard

• Common heuristics have a speedup factor of 4/3 or 2 as

• Is there a Polynomial-Time Approximation Scheme (PTAS) that can
achieve a speedup factor of , for any positive constant ?

‣ If yes, we can partition a task set to any desired degree of accuracy in polynomial time

‣ Of course, we will need faster processors in order to run the tasks :-)

• Next few slides

‣ PTAS for partitioning proposed by Hochbaum and Shmoys (1987)

‣ Implementation by Chattopadhyay and Baruah (2011)

m → ∞

1 + ϵ ϵ

https://dl.acm.org/doi/10.1145/7531.7535
http://ieeexplore.ieee.org/document/5767116/

Key Ideas [1/5]
• Choosing

‣ PTAS requires processors that are times faster

- We cannot provide faster processors

- But we can assume that has only of each processor available

- Thus, if can partition a task set on processors with an available utilization of on
each processor, then can partition the task set on processors with full utilization available

‣ Suppose we are willing to tolerate a loss of up to 10% of the processor utilization

- Thus, , which yields

ϵ
1 + ϵ

𝒜optimal (1
1 + ϵ)

th

𝒜optimal m (1/1 + ϵ)
𝒜PTAS m

Uloss = 1 −
1

1 + ϵ
=

ϵ
1 + ϵ

= 0.1 (i.e. 10%) ϵ =
1
9

Key Ideas [2/5]
• Bucketing utilization values

‣ The utilization of a task may vary anywhere from 0 to 1, i.e., infinitely many possibilities

‣ Instead, we consider only a finite number of points as valid utilizations

- Where

‣ Any utilization is inflated to the next valid utilization  

‣ For example,

ui

V(ϵ) = (v0, v1, v2, v3, …)
vj = ϵ × (1 + ϵ) j ≤ 1

vj < ui < vj+1 vj+1

V(ϵ = 0.3) = {0.3, 0.39, 0.507, 0.6591, 0.8568}

Key Ideas [3/5]
• Enumerate all maximal single-processor configurations

‣ Each configuration identifies a vector

- Where identifies the number of tasks with utilization

- Such that

- I.e., each configuration identifies a set of tasks that can be scheduled on a uniprocessor

‣ The configuration is maximal if no other task can be further added

- I.e., no can be incremented without violating the above inequality

⟨x1, x2, …, x|V(ϵ)|⟩
xi V(ϵ)[i]

x1v1 + x2v2 + …x|V(ϵ)|v|V(ϵ)| ≤ 1

xi

Just seven maximal single-processor
configurations for ϵ = 0.3

Key Ideas [4/5]
• Enumerate all maximal multi-processor configurations

Just seven maximal single-processor
configurations for ϵ = 0.3

Example configurations for
and (out of 140)

m = 4
ϵ = 0.3

Key Ideas [5/5]
• Task assignment

‣ Step 1: Round up task utilizations to values in

‣ Step 2: Ignore “small” tasks with utilization less than

‣ Step 3: For the remaining “large” tasks, identify a matching configuration from the multi-processor lookup table

‣ Step 4: Assign these “large” tasks to appropriate processors based on the chosen configuration

‣ Step 5: Assign each “small” task to any processor upon which it fits

V(ϵ = 0.3) = {0.3, 0.39, 0.507, 0.6591, 0.8568}
ϵ/1 + ϵ

Just seven maximal single-processor
configurations for ϵ = 0.3

Example task set

Example configurations for
and (out of 140)

m = 4
ϵ = 0.3

Global Scheduling

1

Global vs. Partitioned: Pros & Cons

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

• What happens if we increase the number of processors?

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless
of the number of processors.

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

• What happens if we increase the number of processors?

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless
of the number of processors.

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

• What happens if we increase the number of processors?

• Question: Is this task set partitioned-schedulable?

• Answer: Yes! for example, when 1 < +,	 we need only two processors!

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless
of the number of processors.

The Dhall Effect

• Consider an implicit-deadline sporadic task system of (m + 1) tasks to be scheduled upon
an m-processor platform

• Tasks !",… , !% have parameters ('(= 1, +(= +)	

• Task !%." has parameters '%." 	= +%." 	= + + 1

• 0 = 1 "
2 + 2."

2." =
%
2 + 1 lim2↑70 = 1 	

• Is this task set schedulable with Global EDF if all tasks are released simultaneously?

• What happens if we increase the number of processors?

• Question: Is this task set partitioned-schedulable?

• Answer: Yes! for example, when 1 < +,	 we need only two processors!

This task system is not EDF-schedulable despite having a utilization close to 1

The utilization bound of global EDF is very poor: it is arbitrarily close to one regardless
of the number of processors.

The Dhall Effect

• Dhall's Effect shows the limitation of global EDF and RM: both utilization bounds
tend to 1, independently of the value of m.

• Researchers lost interest in global scheduling for ~25 years, since late 1990s.

• Such a limitation is related to EDF and RM, not to global scheduling in general

2

Global Scheduling: Negative Results

• Weak theoretical framework
• Unknown critical instant

• Global EDF is not optimal

• Any global job-fixed (or task-dynamic) priority scheduler is not optimal

• Optimality only for implicit deadlines

• Many sufficient tests (most of them incomparable)

Global vs. Partitioned

• There are tasks that are schedulable only with a global scheduler!

Global vs. Partitioned

• But there are also task sets that are schedulable only with a partitioned scheduler

Global vs. Partitioned

• Example of an unfeasible global schedule with E6 > E7 > EG > EH

Recap: Response-Time Analysis
• Fixed-priority scheduling (RM, DM, …) with preemptions

• Tasks

‣ Each task has time period , completion time , relative deadline

‣ Tasks IDs are used as priorities

• Solve the following recurrence for each to obtain its worst-case response time

‣

• Verify that either

‣ (the task set is schedulable), or

‣ (the task set is not schedulable)

τ = {τ1, τ2, …, τn}
τi Ti Ci Di

τi Ri

Ri = Ci + ∑
a<i (⌈ Ri

Ta ⌉ ⋅ Ca)

∀τi ∈ τ : Ri ≤ Di
∃τk ∈ τ : Rk > Dk

RTA for Global Scheduling

Key Ideas
•

• We don’t have a critical instant where to start the analysis

• A simple valid RTA

Ik(a, b) ≥ x ⟺ ∑
i≠k

min(Ii
k(a, b), x) ≥ mx

Key Ideas

Ik(a, b) ≥ x ⟺ ∑

i≠k

min(Ii
k(a, b), x) ≥ mx

Key Ideas
• More accurate estimation of a task’s workload

Distributed Real-Time Systems

Event-Driven and Dependent Periodic Tasks

τ1,1

τ1,2

τ2,1

τ2,2

τ3,1

τ3,2

E1 : T = 15, Jitter = 1

E2 : T = 30, Jitter = 3

CPU 1 CPU 2BusExternal events Outputs

O1

O2

time

E1 O1
What is the end-to-end path latency?

