Periodic Task Scheduling

CPEN 432 Real-Time System Design

Arpan Gujarati
University of British Columbia

Aperiodic Job vs. Periodic Task

Scheduling Objectives

- Control applications consist of multiple concurrent periodic tasks
 - E.g., sensory data acquisition, low-level servoing, control loops, system monitoring
 - Each task may have unique characteristics (time period, execution time, etc.)
 - OS must guarantee each task is regularly activated at its proper rate
 - and completed within its deadline (could be different from its period)
- Given a task set $\tau = \{\tau_1, \tau_2, ..., \tau_n\}$ consisting of n tasks
 - \triangleright can we find a scheduling algorithm A?
 - such that when all tasks are integrated on a platform consisting of m processors
 - every job of every task is guaranteed to not miss its deadline!
- Given τ , can we find A such that $\forall \tau_i \in \tau: ? \leq ?$

Assumptions

A1: All jobs of τ_i are regularly activated at a constant frequency of $1/T_i$

A2: All jobs of au_i have the same worst-case execution time C_i

A3. All jobs of au_i have the same relative deadline $D_i = T_i$

A4. All tasks in τ are independent (no dependencies, no shared resources)

Note

- The tasks need not be released synchronously
 - E.g., it is possible that $r_{1,0} \neq r_{2,0} \neq \ldots \neq r_{n,0}$

• The tasks can be preempted in between

Next few lectures ...

- Four scheduling algorithms
 - Timeline Scheduling (TS)
 - Rate Monotonic (RM)
 - Earliest Deadline First (EDF)
 - Deadline Monotonic (DM)
- Schedulability analyses (or guarantee tests)
- Optimality proofs (if any)

Timeline Scheduling

Overview

- OS runs one simple cyclic executive
 - Single large periodic task
 - Executes with time period T_{cycle}
- While (true)
 - $t_{start} = Now$
 - If $condition_1$ holds: Execute a job of τ_1
 - If $condition_2$ holds: Execute a job of τ_2
 - **>**
 - If $condition_n$ holds: Execute a job of τ_n
 - Wait until $t_{start} + T_{cycle}$

Example #1

ID	Τ	С
1	25 ms	6 ms
2	50 ms	6 ms
3	100 ms	6 ms

Initialize

$$T_{cycle} = gcd_i(T_i) = 25 \, ms$$

• counter = 0

• While (true)

- $t_{start} = Now$
- Execute a job of τ_1
- If counter % 2 == 0: Execute a job of τ_2
- If counter % 4 == 0: Execute a job of τ_3
- *▶ counter* + +
- wait until $t_{start} + T_{cycle}$

Schedulability analysis: $C_1 + C_2 + C_3 \le 25 \text{ ms}$

Example #2

ID	Τ	С
1	25 ms	15 ms
2	50 ms	6 ms
3	100 ms	6 ms

- $T_{cycle} = gcd_i(T_i) = 25 ms$
- counter = 0
- While (true)
 - $t_{start} = Now$
 - Execute a job of τ_1
 - If counter % 2 == 0: Execute a job of τ_2
 - If counter % 4 == 1: Execute a job of τ_3
 - *▶ counter* + +
 - wait until $t_{start} + T_{cycle}$

Schedulability analysis:

- $C_1 + C_2 \le 25 \ ms$
- $C_1 + C_3 \le 25 \ ms$

Example #3

ID	Τ	C
1	25 ms	15 ms
2	40 ms	6 ms
3	100 ms	6 ms

Rate Monotonic Scheduling

Overview

- RM is a fixed-priority scheduling algorithm
 - Each task is assigned a priority beforehand
- RM assigns priorities based on task frequency
 - Higher frequency (smaller time period) \(\bigcup \) Higher priority
- Famous result by Liu and Layland [1973]
 - RM is optimal among all fixed-priority algorithms
 - i.e., no fixed-priority algorithm can schedule a task set that cannot be scheduled by RM
 - i.e., if any fixed-priority algorithm can schedule a task set, RM can also schedule the task set

RM Optimality Proof [1/n]

- Critical instant of a task
 - Arrival time that produce the largest task response time
- Theorem: The critical instant for any task occurs whenever the task is released simultaneously with all higher-priority tasks
 - Corollary: It suffices to check for a task's schedulability at its critical instant

RM Optimality Proof [2/n]

- For simplicity
 - Let $\tau = \{\tau_1, \tau_2\}$ such that $T_1 < T_2$
- Only two fixed-priority assignments possible
 - RM: τ_1 is assigned the higher priority
 - Algorithm A: τ_2 is assigned the higher priority
- Recall RM optimality statement
 - If any fixed-priority algorithm can schedule a task set, RM can also schedule the task set
 - In this case, if A can schedule $\tau=\{\tau_1,\,\tau_2\}$, RM can also schedule $\tau=\{\tau_1,\,\tau_2\}$
- Proof sketch
 - Step 1: Algorithm A can schedule $\tau \Longrightarrow$ Predicate P_1
 - Step 2: For RM to schedule au, we require another predicate P_2
 - i.e., Predicate $P_2 \Longrightarrow {\rm RM}$ can schedule τ
 - Step 3: Show that $P_1 \implies P_2$

RM Optimality Proof [3/n]

- Step 1: Algorithm A can schedule $\tau \Longrightarrow$ Predicate P_1
 - As per A, τ_2 is assigned the higher priority, so it will trivially be schedulable
 - Let's consider the critical instant to see if τ_1 is also schedulable (despite its lower priority)

RM Optimality Proof [4/n]

- Step 2: Predicate $P_2 \Longrightarrow {\rm RM}$ can schedule τ
 - As per RM, τ_1 is assigned the higher priority, so it will trivially be schedulable
 - Let's consider the critical instant to see if τ_2 is also schedulable (despite its lower priority)

RM Optimality Proof [5/n]

- Step 3: Show that $P_1 \implies P_2$
- Here's P_1 ...
- Here's P_2 ...

RM Optimality Proof [5/n]

- We showed that if $\tau=\{\tau_1,\,\tau_2\}$ such that $T_1< T_2$ is schedulable by an arbitrary priority assignment, it is also schedulable by RM
- What if τ consists of more than two tasks?
 - ► Textbook: "This result can easily be extended to a set of n periodic tasks." :-)
 - Expect a question in the homework assignment
 - See Liu and Layland's 1973 paper for reference
 - (soft copy available at https://cpen432.github.io/readings/)

RM Schedulability Test

- Processor utilization factor
 - Fraction of processor time spent executing tasks in $\tau = \{\tau_1, \tau_2, ..., \tau_n\}$

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}$$

- By simply checking the utilization, can we say if RM can schedule it?
 - That is, if $U \le U_{limit}$, irrespective of the task parameters, τ is schedulable by RM
- Examples

