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Aperiodic Job vs. Periodic Task
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Scheduling Objectives
• Control applications consist of multiple concurrent periodic tasks

‣ E.g., sensory data acquisition, low-level servoing, control loops, system monitoring

‣ Each task may have unique characteristics (time period, execution time, etc.)

‣ OS must guarantee each task is regularly activated at its proper rate


- and completed within its deadline (could be different from its period)


• Given a task set  consisting of  tasks

‣ can we find a scheduling algorithm ?


- such that when all tasks are integrated on a platform consisting of  processors

- every job of every task is guaranteed to not miss its deadline! 

• Given , can we find  such that 

τ = {τ1, τ2, …, τn} n
A

m

τ A ∀τi ∈ τ : ? ≤ ?



A1: All jobs of   are regularly activated at a constant frequency of 


A2: All jobs of  have the same worst-case execution time 


A3. All jobs of  have the same relative deadline 


A4. All tasks in  are independent (no dependencies, no shared resources)

τi 1/Ti

τi Ci

τi Di = Ti

τ

Assumptions



Note
• The tasks need not be released synchronously

‣ E.g., it is possible that r1,0 ≠ r2,0 ≠ … ≠ rn,0

Time
 r1,0 r1,1 r2,2 r2,3 r2,0 r2,1 r2,2 r2,3 r3,0 r3,1 r3,2 r3,3

• The tasks can be preempted in between



Next few lectures …

• Four scheduling algorithms

‣ Timeline Scheduling (TS)

‣ Rate Monotonic (RM)

‣ Earliest Deadline First (EDF)

‣ Deadline Monotonic (DM)


• Schedulability analyses (or guarantee tests)


• Optimality proofs (if any)



Timeline Scheduling



Overview
• OS runs one simple cyclic executive 
‣ Single large periodic task


‣ Executes with time period 


• While (true)

‣ Now


‣ If  holds: Execute a job of 


‣ If  holds: Execute a job of 

‣ …


‣ If  holds: Execute a job of 


‣ Wait until 

Tcycle

tstart =
condition1 τ1
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conditionn τn
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• Initialize

‣ 


‣ 


• While (true)

‣ Now


‣ Execute a job of 


‣ If  == : Execute a job of 


‣ If  == 0: Execute a job of 


‣ 


‣ wait until 

Tcycle = gcdi(Ti) = 25 ms
counter = 0

tstart =
τ1

counter % 2 0 τ2

counter % 4 τ3

counter + +
tstart + Tcycle

Example #1
ID T C
1 25 ms 6 ms
2 50 ms 6 ms
3 100 ms 6 ms

Schedulability analysis: C1 + C2 + C3 ≤ 25 ms
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• 


• 


• While (true)

‣ Now


‣ Execute a job of 


‣ If  == : Execute a job of 


‣ If  == 1: Execute a job of 


‣ 


‣ wait until 

Tcycle = gcdi(Ti) = 25 ms

counter = 0

tstart =
τ1

counter % 2 0 τ2

counter % 4 τ3

counter + +
tstart + Tcycle

Example #2
ID T C
1 25 ms 15 ms
2 50 ms 6 ms
3 100 ms 6 ms

Schedulability analysis:

‣ 


‣
C1 + C2 ≤ 25 ms
C1 + C3 ≤ 25 ms



ID T C
1 25 ms 15 ms
2 40 ms 6 ms
3 100 ms 6 ms

Example #3



Rate Monotonic Scheduling



Overview
• RM is a fixed-priority scheduling algorithm

‣ Each task is assigned a priority beforehand


• RM assigns priorities based on task frequency

‣ Higher frequency (smaller time period)  Higher priority


• Famous result by Liu and Layland [1973]

‣ RM is optimal among all fixed-priority algorithms


- i.e., no fixed-priority algorithm can schedule a task set that cannot be scheduled by RM

- i.e., if any fixed-priority algorithm can schedule a task set, RM can also schedule the task set

⟹



• Critical instant of a task

‣ Arrival time that produce the largest task response time


• Theorem: The critical instant for any task occurs whenever the task is 
released simultaneously with all higher-priority tasks

‣ Corollary: It suffices to check for a task’s schedulability at its critical instant 

RM Optimality Proof [1/n]



• For simplicity

‣ Let  such that 


• Only two fixed-priority assignments possible

‣ RM:  is assigned the higher priority


‣ Algorithm A:  is assigned the higher priority


• Recall RM optimality statement

‣ If any fixed-priority algorithm can schedule a task set, RM can also schedule the task set


‣ In this case, if A can schedule , RM can also schedule 


• Proof sketch

‣ Step 1: Algorithm A can schedule   Predicate 


‣ Step 2: For RM to schedule , we require another predicate 

- i.e., Predicate   RM can schedule 


‣ Step 3: Show that 

τ = {τ1, τ2} T1 < T2

τ1

τ2

τ = {τ1, τ2} τ = {τ1, τ2}

τ ⟹ P1

τ P2
P2 ⟹ τ

P1 ⟹ P2

RM Optimality Proof [2/n]



• Step 1: Algorithm A can schedule   Predicate 

‣ As per A,  is assigned the higher priority, so it will trivially be schedulable


‣ Let’s consider the critical instant to see if  is also schedulable (despite its lower priority)

τ ⟹ P1
τ2

τ1

RM Optimality Proof [3/n]



• Step 2: Predicate   RM can schedule 

‣ As per RM,  is assigned the higher priority, so it will trivially be schedulable


‣ Let’s consider the critical instant to see if  is also schedulable (despite its lower priority)

P2 ⟹ τ
τ1

τ2

RM Optimality Proof [4/n]



• Step 3: Show that 


• Here’s  …


• Here’s  …

P1 ⟹ P2

P1

P2

RM Optimality Proof [5/n]



• We showed that if  such that  is schedulable by an 
arbitrary priority assignment, it is also schedulable by RM


• What if  consists of more than two tasks?

‣ Textbook: “This result can easily be extended to a set of  periodic tasks.” :-)

‣ Expect a question in the homework assignment


- See Liu and Layland’s 1973 paper for reference

- (soft copy available at https://cpen432.github.io/readings/)

τ = {τ1, τ2} T1 < T2

τ
n

RM Optimality Proof [5/n]

https://cpen432.github.io/readings/


• Processor utilization factor

‣ Fraction of processor time spent executing tasks in 


• By simply checking the utilization, can we say if RM can schedule it?

‣ That is, if , irrespective of the task parameters,  is schedulable by RM


• Examples

‣ 


‣

τ = {τ1, τ2, …, τn}

U ≤ Ulimit τ

Ulimit = 1.0?
Ulimit = 0.9?

RM Schedulability Test
U =

n

∑
i=1

Ci

Ti


