
Periodic Task Scheduling
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1

Aperiodic Job vs. Periodic Task

Time
si fi di or ai ri

Job Ji

Relative deadline Di

Response time Ri

Completion or
execution time Ci

Time
si fi = di or ai ri

Job Ji
Laxity or slack Xi

Time
si fidi or ai ri

Job Ji

Lateness Li

Time
 ri,0 ri,1 ri,2 ri,3

di,0 di,1 di,2

Di Di Di

Ri,0 Ri,1 Ri,2 Ri,3

Ci

τi,0

Ci

τi,1

Ci

τi,2

Ci

τi,2

si,0 fi,0 si,1 fi,1 si,2 fi,2 si,3 fi,3

Time period Ti Time period Ti Time period Ti

Zi,k

Some property

‣ response time

‣ slack

‣ lateness

‣ etc.

Z

Corresponding
to task τi

Corresponding to the
 activation of task kth τi

Task response time 
Ri = max

k
(Ri,k)

Scheduling Objectives
• Control applications consist of multiple concurrent periodic tasks

‣ E.g., sensory data acquisition, low-level servoing, control loops, system monitoring

‣ Each task may have unique characteristics (time period, execution time, etc.)

‣ OS must guarantee each task is regularly activated at its proper rate

- and completed within its deadline (could be different from its period)

• Given a task set consisting of tasks

‣ can we find a scheduling algorithm ?

- such that when all tasks are integrated on a platform consisting of processors

- every job of every task is guaranteed to not miss its deadline!

• Given , can we find such that

τ = {τ1, τ2, …, τn} n
A

m

τ A ∀τi ∈ τ : ? ≤ ?

A1: All jobs of are regularly activated at a constant frequency of

A2: All jobs of have the same worst-case execution time

A3. All jobs of have the same relative deadline

A4. All tasks in are independent (no dependencies, no shared resources)

τi 1/Ti

τi Ci

τi Di = Ti

τ

Assumptions

Note
• The tasks need not be released synchronously

‣ E.g., it is possible that r1,0 ≠ r2,0 ≠ … ≠ rn,0

Time
 r1,0 r1,1 r2,2 r2,3 r2,0 r2,1 r2,2 r2,3 r3,0 r3,1 r3,2 r3,3

• The tasks can be preempted in between

Next few lectures …

• Four scheduling algorithms

‣ Timeline Scheduling (TS)

‣ Rate Monotonic (RM)

‣ Earliest Deadline First (EDF)

‣ Deadline Monotonic (DM)

• Schedulability analyses (or guarantee tests)

• Optimality proofs (if any)

Timeline Scheduling

Overview
• OS runs one simple cyclic executive
‣ Single large periodic task

‣ Executes with time period

• While (true)

‣ Now

‣ If holds: Execute a job of

‣ If holds: Execute a job of

‣ …

‣ If holds: Execute a job of

‣ Wait until

Tcycle

tstart =
condition1 τ1

condition2 τ2

conditionn τn

tstart + Tcycle

Timeτ1

 0
τ2 τ3 τn…

Tcycle

 2Tcycle

τ1 τ2 τ3 τn…

 Tcycle

Tcycle

Deadline for
first cycle

Deadline for
second cycle

• Initialize

‣

‣

• While (true)

‣ Now

‣ Execute a job of

‣ If == : Execute a job of

‣ If == 0: Execute a job of

‣

‣ wait until

Tcycle = gcdi(Ti) = 25 ms
counter = 0

tstart =
τ1

counter % 2 0 τ2

counter % 4 τ3

counter + +
tstart + Tcycle

Example #1
ID T C
1 25 ms 6 ms
2 50 ms 6 ms
3 100 ms 6 ms

Schedulability analysis: C1 + C2 + C3 ≤ 25 ms

τ1 τ2 τ3τ1τ1 τ1 τ2τ1

Time0

τ2

50 25

d1,1

75 100

d1,3

 r1,1 r1,2 r1,3 r1,4 r1,5
 r2,1
 r3,1

 r2,2 r2,3
 r3,2

d1,2 d1,4

d2,1 d2,2

d3,1

τ3

τ1τ1 τ2τ1 τ3 Timeτ1

0

τ2

50 25

d1,1

75 100

d1,3

 r1,1 r1,2 r1,3 r1,4 r1,5
 r2,1
 r3,1

 r2,2 r2,3
 r3,2

d1,2 d1,4

d2,1 d2,2

d3,1

•

•

• While (true)

‣ Now

‣ Execute a job of

‣ If == : Execute a job of

‣ If == 1: Execute a job of

‣

‣ wait until

Tcycle = gcdi(Ti) = 25 ms

counter = 0

tstart =
τ1

counter % 2 0 τ2

counter % 4 τ3

counter + +
tstart + Tcycle

Example #2
ID T C
1 25 ms 15 ms
2 50 ms 6 ms
3 100 ms 6 ms

Schedulability analysis:

‣

‣
C1 + C2 ≤ 25 ms
C1 + C3 ≤ 25 ms

ID T C
1 25 ms 15 ms
2 40 ms 6 ms
3 100 ms 6 ms

Example #3

Rate Monotonic Scheduling

Overview
• RM is a fixed-priority scheduling algorithm

‣ Each task is assigned a priority beforehand

• RM assigns priorities based on task frequency

‣ Higher frequency (smaller time period) Higher priority

• Famous result by Liu and Layland [1973]

‣ RM is optimal among all fixed-priority algorithms

- i.e., no fixed-priority algorithm can schedule a task set that cannot be scheduled by RM

- i.e., if any fixed-priority algorithm can schedule a task set, RM can also schedule the task set

⟹

• Critical instant of a task

‣ Arrival time that produce the largest task response time

• Theorem: The critical instant for any task occurs whenever the task is
released simultaneously with all higher-priority tasks

‣ Corollary: It suffices to check for a task’s schedulability at its critical instant

RM Optimality Proof [1/n]

• For simplicity

‣ Let such that

• Only two fixed-priority assignments possible

‣ RM: is assigned the higher priority

‣ Algorithm A: is assigned the higher priority

• Recall RM optimality statement

‣ If any fixed-priority algorithm can schedule a task set, RM can also schedule the task set

‣ In this case, if A can schedule , RM can also schedule

• Proof sketch

‣ Step 1: Algorithm A can schedule Predicate

‣ Step 2: For RM to schedule , we require another predicate

- i.e., Predicate RM can schedule

‣ Step 3: Show that

τ = {τ1, τ2} T1 < T2

τ1

τ2

τ = {τ1, τ2} τ = {τ1, τ2}

τ ⟹ P1

τ P2
P2 ⟹ τ

P1 ⟹ P2

RM Optimality Proof [2/n]

• Step 1: Algorithm A can schedule Predicate

‣ As per A, is assigned the higher priority, so it will trivially be schedulable

‣ Let’s consider the critical instant to see if is also schedulable (despite its lower priority)

τ ⟹ P1
τ2

τ1

RM Optimality Proof [3/n]

• Step 2: Predicate RM can schedule

‣ As per RM, is assigned the higher priority, so it will trivially be schedulable

‣ Let’s consider the critical instant to see if is also schedulable (despite its lower priority)

P2 ⟹ τ
τ1

τ2

RM Optimality Proof [4/n]

• Step 3: Show that

• Here’s …

• Here’s …

P1 ⟹ P2

P1

P2

RM Optimality Proof [5/n]

• We showed that if such that is schedulable by an
arbitrary priority assignment, it is also schedulable by RM

• What if consists of more than two tasks?

‣ Textbook: “This result can easily be extended to a set of periodic tasks.” :-)

‣ Expect a question in the homework assignment

- See Liu and Layland’s 1973 paper for reference

- (soft copy available at https://cpen432.github.io/readings/)

τ = {τ1, τ2} T1 < T2

τ
n

RM Optimality Proof [5/n]

https://cpen432.github.io/readings/

• Processor utilization factor

‣ Fraction of processor time spent executing tasks in

• By simply checking the utilization, can we say if RM can schedule it?

‣ That is, if , irrespective of the task parameters, is schedulable by RM

• Examples

‣

‣

τ = {τ1, τ2, …, τn}

U ≤ Ulimit τ

Ulimit = 1.0?
Ulimit = 0.9?

RM Schedulability Test
U =

n

∑
i=1

Ci

Ti

