
Periodic Task Scheduling
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1

Assignment 1
• Deadline is 11:59 PM, 7 February, 2022

Recap: Aperiodic Job vs. Periodic Task

Time
si fi di or ai ri

Job Ji

Relative deadline Di

Response time Ri

Completion or
execution time Ci

Time
si fi = di or ai ri

Job Ji
Laxity or slack Xi

Time
si fidi or ai ri

Job Ji

Lateness Li

Time
 ri,0 ri,1 ri,2 ri,3

di,0 di,1 di,2

Di Di Di

Ri,0 Ri,1 Ri,2 Ri,3

Ci

τi,0

Ci

τi,1

Ci

τi,2

Ci

τi,2

si,0 fi,0 si,1 fi,1 si,2 fi,2 si,3 fi,3

Time period Ti Time period Ti Time period Ti

Zi,k

Some property

‣ response time

‣ slack

‣ lateness

‣ etc.

Z

Corresponding
to task τi

Corresponding to the
 activation of task kth τi

Task response time 
Ri = max

k
(Ri,k)

A1: All jobs of are regularly activated at a constant frequency of

A2: All jobs of have the same worst-case execution time

A3. All jobs of have the same relative deadline

A4. All tasks in are independent (no dependencies, no shared resources)

τi 1/Ti

τi Ci

τi Di = Ti

τ

Recap: Assumptions

Recap: Assumptions
• The tasks need not be released synchronously

‣ E.g., it is possible that r1,0 ≠ r2,0 ≠ … ≠ rn,0

Time
 r1,0 r1,1 r2,2 r2,3 r2,0 r2,1 r2,2 r2,3 r3,0 r3,1 r3,2 r3,3

• The tasks can be preempted in between

Rate Monotonic Scheduling

Recap: Overview
• RM is a fixed-priority scheduling algorithm

‣ Each task is assigned a priority beforehand

• RM assigns priorities based on task frequency

‣ Higher frequency (smaller time period) Higher priority

• Famous result by Liu and Layland [1973]

‣ RM is optimal among all fixed-priority algorithms

- i.e., no fixed-priority algorithm can schedule a task set that cannot be scheduled by RM

- i.e., if any fixed-priority algorithm can schedule a task set, RM can also schedule the task set

⟹

• Processor utilization factor

‣ Fraction of processor time spent executing tasks in

• By simply checking the utilization, can we say if RM can schedule it?

‣ I.e., can we find such that

- if , irrespective of the task parameters, is schedulable by R

τ = {τ1, τ2, …, τn}

Uub
U ≤ Uub τ

RM Schedulability Test
U =

n

∑
i=1

Ci

Ti

• Example

‣

‣
Uub = 1.0?
Uub = 0.9?

RM Schedulability Test

• For simplicity

‣ Let such that

• Only two fixed-priority assignments possible

‣ RM: is assigned the higher priority

‣ Algorithm A: is assigned the higher priority (we only care about RM!)

• Recall the critical instant theorem

‣ It suffices to check for a task’s schedulability when it is released simultaneously with all higher-priority tasks

• Proof sketch

‣ Step 1: Given , , and , find the maximum value for such that RM can schedule

- This gives us , such that for any , task set utilization guarantees that is schedulable using RM

‣ Step 2: Minimize with respect to

- This gives us , such that for any and , task set utilization guarantees that is schedulable using RM

‣ Step 3: Minimize with respect to T1 and T2

- This gives us (constant), such that for any , , and , task set utilization guarantees that is schedulable using RM

τ = {τ1, τ2} T1 < T2

τ1

τ2

T1 T2 C1 C2 τ
Uub = f(T1, T2, C1) C2 U ≤ Uub τ

Uub C1
U′ ub = g(T1, T2) C1 C2 U ≤ U′ ub τ

U′ ub
U′ ′ ub C1, C2 T1 T2 U ≤ U′ ′ ub τ

RM Utilization Bound Derivation [1/n]

RM Utilization Bound Derivation [2/n]

RM Utilization Bound Derivation [3/n]
Equation 4.5 from the textbook: U =

T1

T2 [F + (T2

T1
− F) (T2

T1
− F)]

X-axis on a logarithmic scale

F = 1

 is a multiple of T2 T1
…

Earliest Deadline First

Example
Task ID Time Period T Computation Time C

1 5 ms 2 ms

2 7 ms 4 ms

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

RM

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

EDF

EDF Utilization Bound
• What?

• Intuition?

RM and EDF’s Utilization Bounds

What if ? Di ≤ Ti

A1: All jobs of are regularly activated at a constant frequency of

A2: All jobs of have the same worst-case execution time

A3. All jobs of have the same relative deadline

A4. All tasks in are independent (no dependencies, no shared resources)

τi 1/Ti

τi Ci

τi Di = Ti Ci ≤ Di ≤ Ti

τ

Recap: Assumptions

Is RM still optimal?

