Periodic Task Scheduling CPEN 432 Real-Time System Design

Arpan Gujarati University of British Columbia

Assignment 1

• Deadline is 11:59 PM, 7 February, 2022

Recap: Aperiodic Job vs. Periodic Task $d_{i,0}$ Completion or execution time C_i

- slack
- lateness
- etc.

Task response time $R_i = \max(R_{i,k})$

to task τ_i

Recap: Assumptions

A2: All jobs of τ_i have the same worst-case execution time C_i

A3. All jobs of τ_i have the same relative deadline $D_i = T_i$

- A1: All jobs of τ_i are regularly activated at a constant frequency of $1/T_i$
- **A4.** All tasks in τ are **independent** (no dependencies, no shared resources)

Recap: Assumptions

- The tasks need not be released synchronously
 - E.g., it is possible that $r_{1,0} \neq r_{2,0} \neq \ldots \neq r_{n,0}$

The tasks can be preempted in between

Rate Monotonic Scheduling

Recap: Overview

- RM is a **fixed-priority** scheduling algorithm
 - Each task is assigned a priority beforehand
- RM assigns priorities based on task frequency
 - Higher frequency (smaller time period) \implies Higher priority
- Famous result by Liu and Layland [1973]
 - RM is **optimal** among all fixed-priority algorithms
 - i.e., no fixed-priority algorithm can schedule a task set that cannot be scheduled by RM
 - i.e., if any fixed-priority algorithm can schedule a task set, RM can also schedule the task set

RM Schedulability Test

- Processor utilization factor
 - Fraction of processor time spent exec
- By simply checking the utilization, can we say if RM can schedule it?
 - I.e., can we find $U_{\mu h}$ such that
 - if $U \leq U_{\mu b}$, irrespective of the task parameters, τ is schedulable by R

cuting tasks in
$$\tau = \{\tau_1, \tau_2, \dots, \tau_n\}$$

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}$$

RM Schedulability Test

• Example

•
$$U_{ub} = 1.0?$$

•
$$U_{ub} = 0.9?$$

RM Utilization Bound Derivation [1/n]

- For simplicity
 - Let $\tau = \{\tau_1, \tau_2\}$ such that $T_1 < T_2$
- Only two fixed-priority assignments possible
 - RM: τ_1 is assigned the higher priority
 - Algorithm A: τ_2 is assigned the higher priority (we only care about RM!)
- Recall the critical instant theorem
 - It suffices to check for a task's schedulability when it is released simultaneously with all higher-priority tasks
- Proof sketch
 - Step 1: Given T_1 , T_2 , and C_1 , find the maximum value for C_2 such that RM can schedule τ
 - This gives us $U_{ub} = f(T_1, T_2, C_1)$, such that for any C_2 , task set utilization $U \le U_{ub}$ guarantees that τ is schedulable using RM
 - Step 2: Minimize $U_{\mu b}$ with respect to C_1
 - This gives us $U'_{ub} = g(T_1, T_2)$, such that for any C_1 and C_2 , task set utilization $U \le U'_{ub}$ guarantees that τ is schedulable using RM
 - Step 3: Minimize U'_{ub} with respect to T1 and T2

- This gives us U''_{ub} (constant), such that for any C_1, C_2, T_1 , and T_2 , task set utilization $U \le U''_{ub}$ guarantees that τ is schedulable using RM

RM Utilization Bound Derivation [2/n]

RM Utilization Bound Derivation [3/n]

Earliest Deadline First

Example

Task ID	Time Period T	Computation Time C
1	5 ms	2 ms
2	7 ms	4 ms

RM																																		
1																																		
2																																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	

ED	F																																
1																																	
2																																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33 3

EDF Utilization Bound

- What?
- Intuition?

RM and EDF's Utilization Bounds

What if $D_i \leq T_i$?

Recap: Assumptions

A2: All jobs of τ_i have the same worst-case execution time C_i

- A1: All jobs of τ_i are regularly activated at a constant frequency of $1/T_i$
- A3. All jobs of τ_i have the same relative deadline $D_i = T_i C_i \le D_i \le T_i$
- **A4.** All tasks in τ are **independent** (no dependencies, no shared resources)

Is RM still optimal?