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Utilization Bounds [1/2]
• For any algorithm , a utilization bound of  implies


‣ Task sets with a total processor utilization of   can be scheduled successfully


• EDF bound: 


• RM bound (simple): 


‣ If , then 


‣ If , then 


• RM bound (hyperbolic): 


‣ Not just a function of , but of task-specific utilizations 

A UA
ub

U ≤ UA
ub

UEDF
ub = 1 (100%)

URM
ub, simple = n(21/n − 1)

n = 2 0.828 (82.8%)
n → ∞ ln 2 = 0.693 (69.3%)
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Utilization Bounds [2/2]

UEDF
ub = 1

URM
ub, simple = 0.828 (n = 2)

(U1 + 1)(U2 + 1) ≤ 2

•  is a “sufficient”, but not a “necessary” condition

‣ Sufficient to ensure that the task set can be scheduled by RM


‣ But not always necessary; many task sets with  can also be scheduled by RM

- e.g., we saw earlier a task set with  that was schedulable by RM; some may even have 


‣ In other words: , however, 


•  is a “sufficient” and also a “necessary” condition 
‣ 


• Question: Find a simple necessary but not sufficient test for RM? 

‣ , however, 


• Question: Is RM’s hyperbolic bound, e.g., the condition ,

1. sufficient but not necessary?

2. not sufficient but necessary?

3. both sufficient and necessary?

4. neither sufficient nor necessary?


• How are RM’s simple and hyperbolic bounds related?

‣ The hyperbolic bound is a “tight” bound


- Cannot be improved any further; beyond this bound, we can always find a task set that RM cannot schedule


‣ The simple bound  is “conservative” or “pessimistic”

U ≤ URM
ub, simple

U > UA
ub

U = 90 % U = 100 %

U ≤ URM
ub, simple ⟹ success success ⟹ U ≤ URM

ub, simple

U ≤ UEDF
ub

U ≤ UEDF
ub ⟺ success

____________ ⟹ success success ⟹ ____________

(U1 + 1)(U2 + 1) ≤ 2

URM
ub, simple



• , i.e.,  “dominates” 

‣ Task set  is schedulable using   Task set  is schedulable using 


‣ If B can successfully schedule , then A can also successfully schedule 


‣ Venn diagram:   

A ≥ B A B
τ B ⟹ τ A

τ τ
Sblue ⊆ Sgreen

Comparing scheduling algorithms  and  [1/2]A B

Set of all task 
sets

Set of all task sets 
schedulable by B

Set of all task sets 
schedulable by A

• , i.e.,  “strictly dominates” 

‣ At least one task set  such that


-  can successfully schedule 


-  cannot successfully schedule 


‣   

A > B A B
τ

A τ
B τ

Sblue ⊂ Sgreen



• , i.e.,  and  are “incomparable” 
‣ At least two task sets  and  such that


-  can successfully schedule  but B cannot


-  can successfully schedule  but A cannot


‣ Venn diagram:    and   

A ≠ B A B
τ τ′ 

A τ
B τ′ 

Sblue ⊈ Sgreen Sgreen ⊈ Sblue

Comparing scheduling algorithms  and  [2/2]A B
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• EDF ________________ RM!


• Question:

‣ Two unknown algorithms  and B with utilization bounds of  and , respectively


- Every task set  whose utilization  is schedulable using 


- Every task set  whose utilization  is schedulable using 


‣ How are  and  related if  and ?

1. A dominates B

2. A strictly dominates B

3. B dominates A

4. B strictly dominates A

5. A and B are incomparable

6. None of the above

A UA
ub UB

ub
τ U ≤ UA

ub A
τ U ≤ UB

ub B

A B UA
ub = 95 % UB

ub = 69 %

How do RM and EDF compare?



• In terms of runtime overheads, which is better? Why?

How do RM and EDF compare?



What if ? Di < Ti



A1: All jobs of   are regularly activated at a constant frequency of 


A2: All jobs of  have the same worst-case execution time 


A3. All jobs of  have the same relative deadline   


A4. All tasks in  are independent (no dependencies, no shared resources)

τi 1/Ti

τi Ci

τi Di = Ti Ci ≤ Di ≤ Ti

τ

Recap: Assumptions

Implicit 
Deadlines

Constrained 
Deadlines



Ci

Recap: Aperiodic Job vs. Periodic Task

Time
si fi di or ai ri

Job Ji

Relative deadline Di

Response time Ri

Completion or 
execution time Ci

Time
si fi = di or ai ri

Job Ji
Laxity or slack Xi

Time
si fidi or ai ri

Job Ji

Lateness Li

Time
 ri,0 ri,1 ri,2 ri,3

di,0 di,1 di,2

Di Di Di

Ri,0 Ri,1 Ri,2 Ri,3

Ci

τi,0 τi,1

Ci

τi,2

Ci

τi,2

si,0 fi,0 si,1 fi,1 si,2 fi,2 si,3 fi,3

Time period Ti Time period Ti Time period Ti

Zi,k

Some property 

‣ response time

‣ slack

‣ lateness

‣ etc.

Z

Corresponding 
to task τi

Corresponding to the 
 activation of task kth τi

Task response time 
Ri = max

k
(Ri,k)



Why would you want ?Di ≤ Ti



Is RM still optimal?



Do RM utilization bounds still hold?



Rate Deadline Monotonic Scheduling (DM)



• Like RM, DM is optimal 
‣ If a task set is schedulable by some fixed priority algorithm, it is also schedulable by DM

‣ Proof of DM’s optimality is similar to the one for RM

Is DM optimal among all fixed-priority algorithms?



Schedulability Analysis for DM
• For simplicity:  such that 


• DM assigns the highest priority to , then to , and so on …


• Sketch:

‣ Analyze one task at a time


- E.g., let’s analyze whether  will meet all its deadlines.


‣ Consider any arbitrary job of 

- E.g., let’s consider its  job , which is released at  and whose deadline is at 


‣ Consider another arbitrary task with a higher priority

- E.g., let’s consider ; from our model above, this implies that  and thus  has a higher priority than 


‣ What is the maximum duration for which task  can “interfere” with job 


- In other words, how often does DM schedule jobs of  while job  is still “pending” 

- We will refer to this quantify as “interference” from  to  and denote its value using 


‣ Schedulability analysis:


- Job  does not miss its deadline if 


‣ Final step: Iterate!

τ = {τ1, τ2, …, τn} D1 < D2 < … < Dn

τ1 τ2

τi

τi
kth τi,k ri,k di,k = ri,k + Di

τa (a < i) Da < Di τa τi

τa τi,k
τa τi,k

τa τi,k Ia
i,k

τi,k Ci + ∑
a<i

Ia
i,k ≤ Di


