Periodic Task Scheduling CPEN 432 Real-Time System Design

Arpan Gujarati University of British Columbia

Utilization Bounds [1/2]

- For any algorithm A, a utilization bound of U_{ub}^A implies • Task sets with a total processor utilization of $U \leq U_{\mu h}^A$ can be scheduled successfully
- EDF bound: $U_{ub}^{EDF} = 1 (100\%)$
- RM bound (simple): $U_{ub, simple}^{RM} = n(2^{1/n} 1)$
 - If n = 2, then 0.828 (82.8%)
 - If $n \to \infty$, then ln 2 = 0.693 (69.3%)

RM bound (hyperbolic): $\prod_{i=1}^{n} (U_i + 1) \le 2$ i=1

• Not just a function of n, but of task-specific utilizations U_i

Utilization Bounds [2/2]

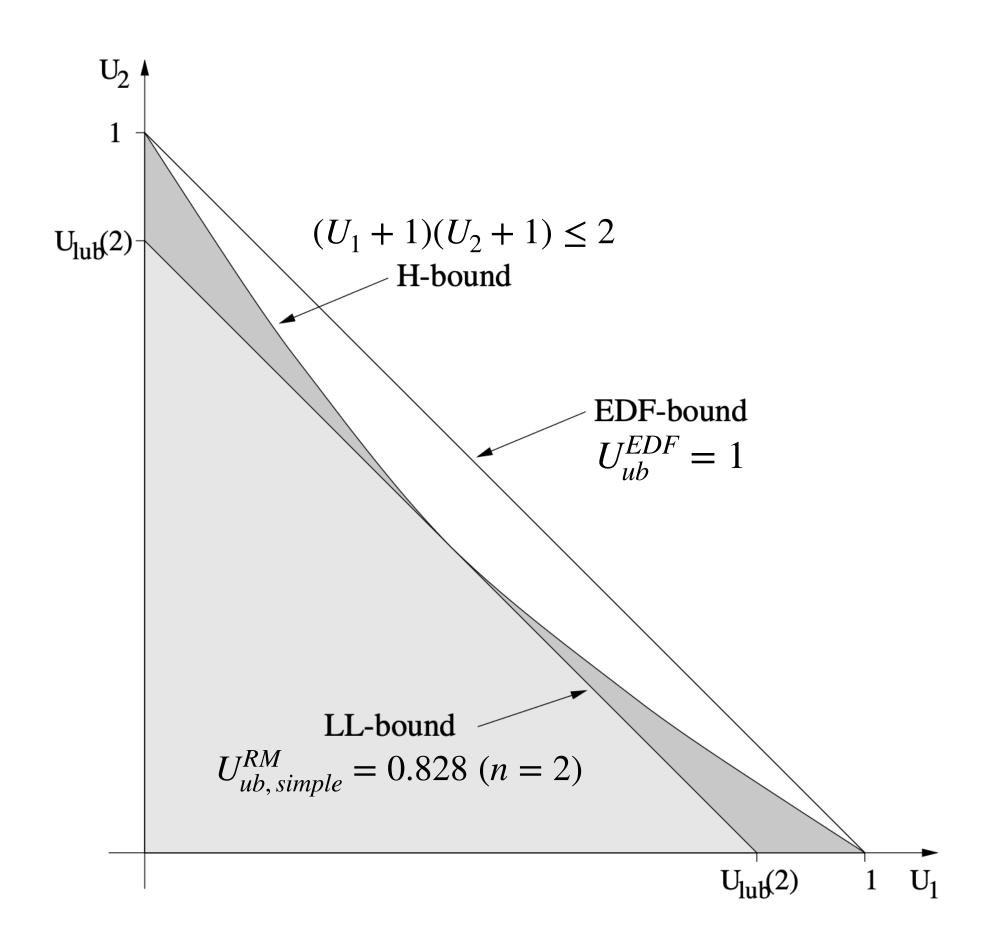


Figure 4.11 Schedulability bounds for RM and EDF in the utilization space.

• $U \le U_{ub, simple}^{RM}$ is a "sufficient", but not a "necessary" condition

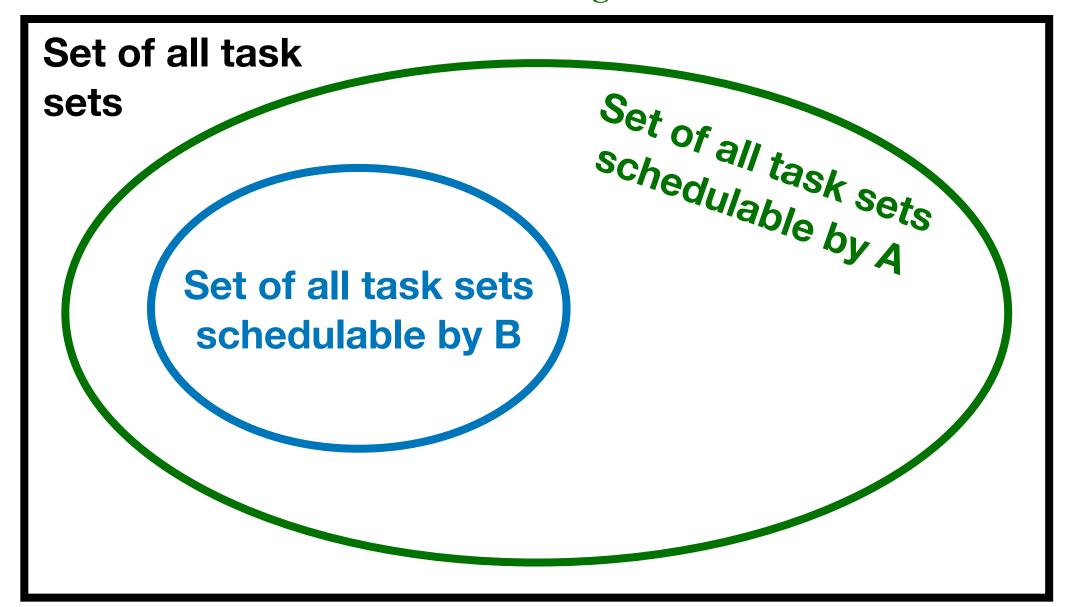
- Sufficient to ensure that the task set can be scheduled by RM
- But not always necessary; many task sets with $U > U_{ub}^A$ can also be scheduled by RM
 - e.g., we saw earlier a task set with $U=90\,\%\,$ that was schedulable by RM; some may even have $U=100\,\%\,$
- ▶ In other words: $U \le U_{ub, simple}^{RM} \implies success$, however, $success \implies U \le U_{ub, simple}^{RM}$
- U ≤ U^{EDF}_{ub} is a "sufficient" and also a "necessary" condition
 U ≤ U^{EDF}_{ub} ⇔ success
- Question: Find a simple necessary but not sufficient test for RM?

▶ _____ \implies success, however, success \implies _____

- Question: Is RM's hyperbolic bound, e.g., the condition $(U_1 + 1)(U_2 + 1) \le 2$,
 - 1. sufficient but not necessary?
 - 2. not sufficient but necessary?
 - 3. both sufficient and necessary?
 - 4. neither sufficient nor necessary?
- How are RM's simple and hyperbolic bounds related?
 - The hyperbolic bound is a "tight" bound
 - Cannot be improved any further; beyond this bound, we can always find a task set that RM cannot schedule
 - The simple bound $U_{ub, simple}^{RM}$ is "conservative" or "pessimistic"

Comparing scheduling algorithms A and B [1/2]

- $A \ge B$, i.e., A "dominates" B
 - Task set τ is schedulable using $B \Longrightarrow$ Task set τ is schedulable using A
 - If B can successfully schedule τ , then A can also successfully schedule τ
 - Venn diagram: $S_{blue} \subseteq S_{green}$

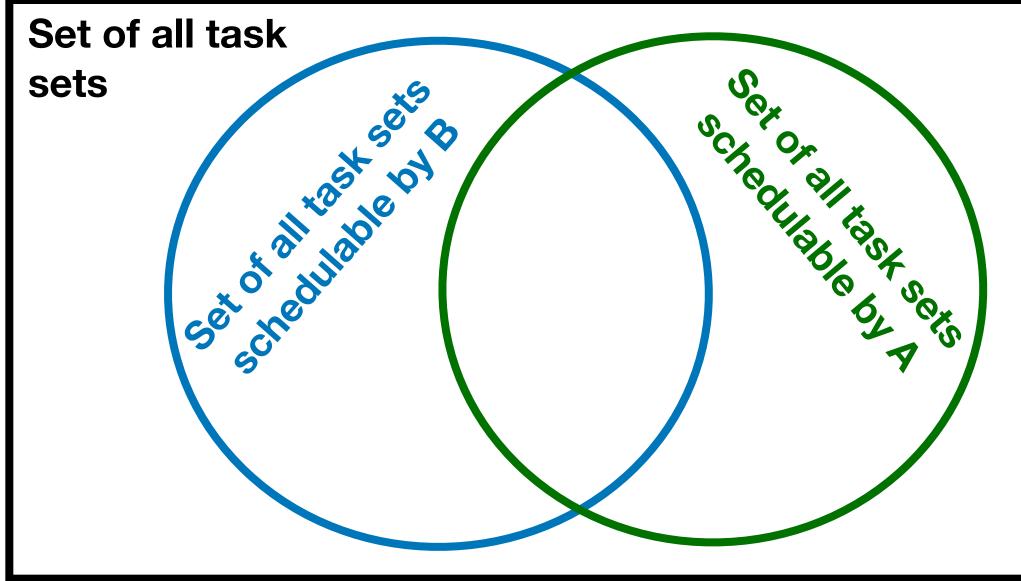


- At least one task set τ such that
 - A can successfully schedule τ
 - B cannot successfully schedule τ

•
$$S_{blue} \subset S_{green}$$

Comparing scheduling algorithms A and B [2/2]

- $A \neq B$, i.e., A and B are "incomparable"
 - At least two task sets τ and τ' such that
 - A can successfully schedule τ but B cannot
 - *B* can successfully schedule τ' but A cannot



How do RM and EDF compare?

- EDF RM!
- Question: lacksquare
 - Two unknown algorithms A and B with utilization bounds of U_{ub}^A and U_{ub}^B , respectively
 - Every task set τ whose utilization $U \leq U_{\mu h}^A$ is schedulable using A
 - Every task set τ whose utilization $U \leq U_{ub}^B$ is schedulable using B
 - How are A and B related if $U_{\mu h}^A = 95\%$ and $U_{\mu h}^B = 69\%$?
 - 1. A dominates B
 - 2. A strictly dominates B
 - 3. B dominates A
 - 4. B strictly dominates A
 - 5. A and B are incomparable
 - 6. None of the above

How do RM and EDF compare?

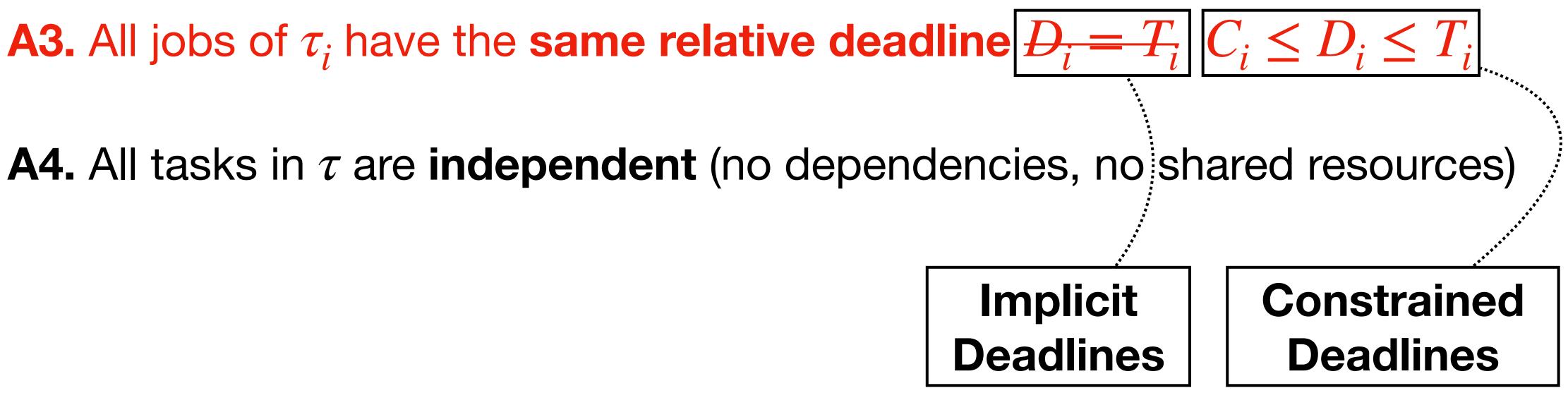
• In terms of runtime overheads, which is better? Why?

What if $D_i < T_i$?

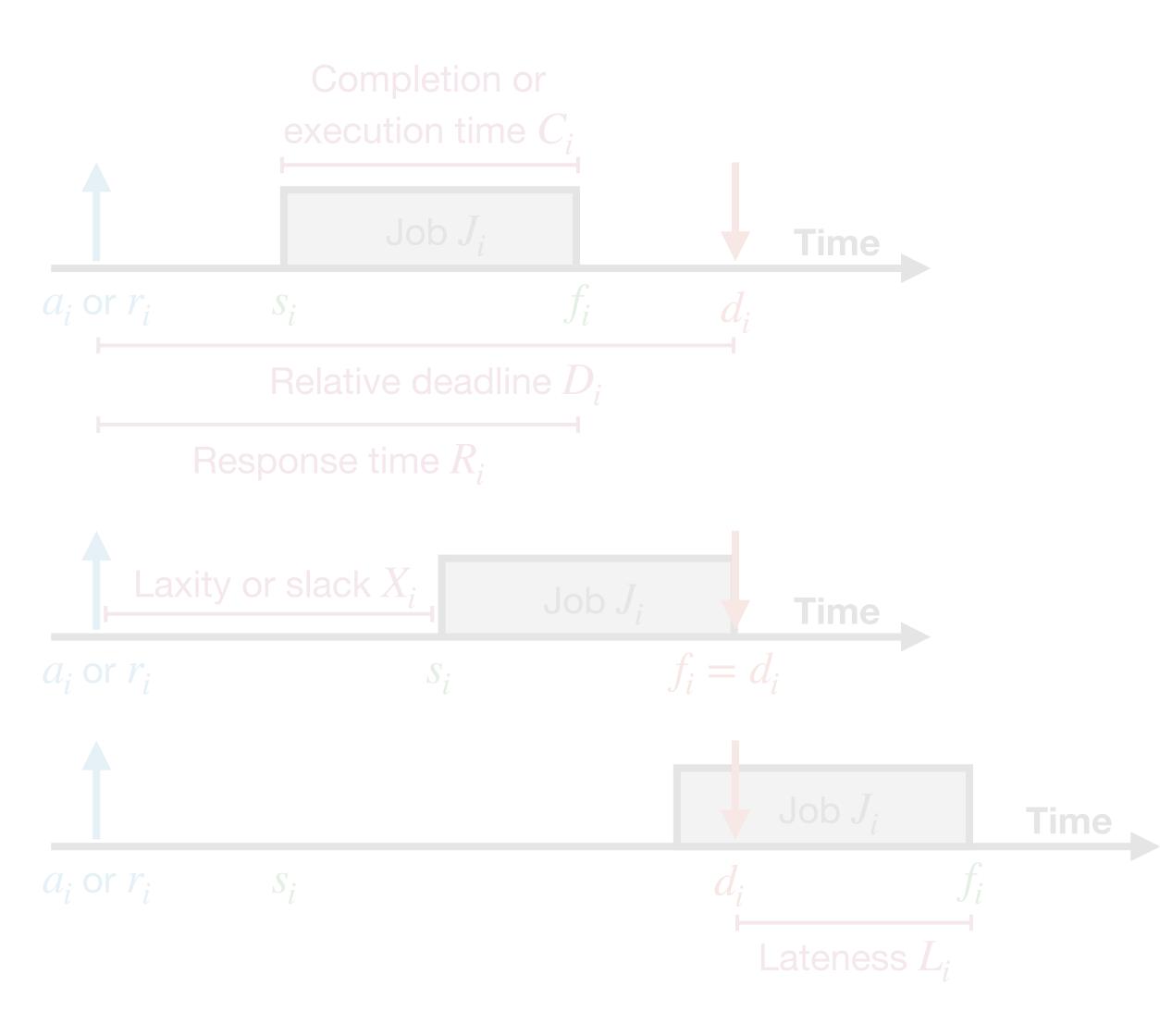
Recap: Assumptions

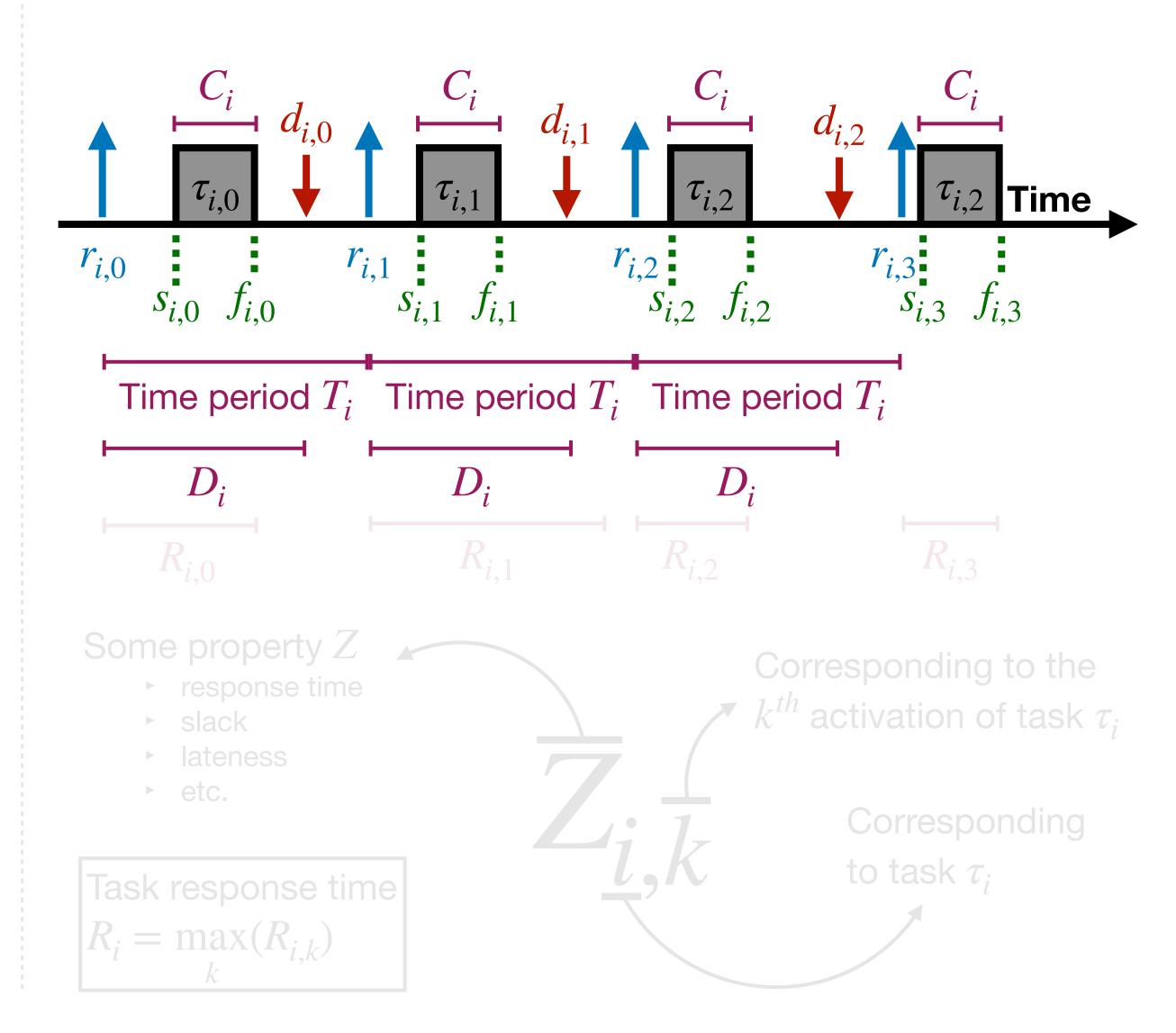
A2: All jobs of τ_i have the same worst-case execution time C_i

- A1: All jobs of τ_i are regularly activated at a constant frequency of $1/T_i$



Recap: Aperiodic Job vs. Periodic Task





Why would you want $D_i \leq T_i$?

Is RM still optimal?

Do RM utilization bounds still hold?

Rate Deadline Monotonic Scheduling (DM)

Is DM optimal among all fixed-priority algorithms?

- Like RM, **DM** is optimal

 - Proof of DM's optimality is similar to the one for RM

If a task set is schedulable by some fixed priority algorithm, it is also schedulable by DM

Schedulability Analysis for DM

- For simplicity: $\tau = \{\tau_1, \tau_2, ..., \tau_n\}$ such that $D_1 < D_2 < ... < D_n$
- DM assigns the highest priority to τ_1 , then to τ_2 , and so on ... \bullet
- Sketch: \bullet
 - Analyze one task at a time
 - E.g., let's analyze whether τ_i will meet all its deadlines.
 - Consider any arbitrary job of τ_i
 - E.g., let's consider its k^{th} job $\tau_{i,k}$, which is released at $r_{i,k}$ and whose deadline is at $d_{i,k} = r_{i,k} + D_i$
 - Consider another arbitrary task with a higher priority
 - E.g., let's consider τ_a (a < i); from our model above, this implies that $D_a < D_i$ and thus τ_a has a higher priority than τ_i
 - What is the maximum duration for which task τ_a can "interfere" with job $\tau_{i,k}$
 - In other words, how often does DM schedule jobs of τ_a while job $\tau_{i,k}$ is still "pending"
 - We will refer to this quantify as "interference" from τ_a to $\tau_{i,k}$ and denote its value using $I^a_{i,k}$
 - Schedulability analysis:

Job $\tau_{i,k}$ does not miss its deadline if $C_i + \sum I_{i,k}^a \le D_i$

Final step: Iterate!