
Periodic Task Scheduling
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1

Utilization Bounds [1/2]
• For any algorithm , a utilization bound of implies

‣ Task sets with a total processor utilization of can be scheduled successfully

• EDF bound:

• RM bound (simple):

‣ If , then

‣ If , then

• RM bound (hyperbolic):

‣ Not just a function of , but of task-specific utilizations

A UA
ub

U ≤ UA
ub

UEDF
ub = 1 (100%)

URM
ub, simple = n(21/n − 1)

n = 2 0.828 (82.8%)
n → ∞ ln 2 = 0.693 (69.3%)

n

∏
i=1

(Ui + 1) ≤ 2

n Ui

Utilization Bounds [2/2]

UEDF
ub = 1

URM
ub, simple = 0.828 (n = 2)

(U1 + 1)(U2 + 1) ≤ 2

• is a “sufficient”, but not a “necessary” condition

‣ Sufficient to ensure that the task set can be scheduled by RM

‣ But not always necessary; many task sets with can also be scheduled by RM

- e.g., we saw earlier a task set with that was schedulable by RM; some may even have

‣ In other words: , however,

• is a “sufficient” and also a “necessary” condition
‣

• Question: Find a simple necessary but not sufficient test for RM? 

‣ , however,

• Question: Is RM’s hyperbolic bound, e.g., the condition ,

1. sufficient but not necessary?

2. not sufficient but necessary?

3. both sufficient and necessary?

4. neither sufficient nor necessary?

• How are RM’s simple and hyperbolic bounds related?

‣ The hyperbolic bound is a “tight” bound

- Cannot be improved any further; beyond this bound, we can always find a task set that RM cannot schedule

‣ The simple bound is “conservative” or “pessimistic”

U ≤ URM
ub, simple

U > UA
ub

U = 90 % U = 100 %

U ≤ URM
ub, simple ⟹ success success ⟹ U ≤ URM

ub, simple

U ≤ UEDF
ub

U ≤ UEDF
ub ⟺ success

____________ ⟹ success success ⟹ ____________

(U1 + 1)(U2 + 1) ≤ 2

URM
ub, simple

• , i.e., “dominates”

‣ Task set is schedulable using Task set is schedulable using

‣ If B can successfully schedule , then A can also successfully schedule

‣ Venn diagram:

A ≥ B A B
τ B ⟹ τ A

τ τ
Sblue ⊆ Sgreen

Comparing scheduling algorithms and [1/2]A B

Set of all task
sets

Set of all task sets
schedulable by B

Set of all task sets
schedulable by A

• , i.e., “strictly dominates”

‣ At least one task set such that

- can successfully schedule

- cannot successfully schedule

‣

A > B A B
τ

A τ
B τ

Sblue ⊂ Sgreen

• , i.e., and are “incomparable”
‣ At least two task sets and such that

- can successfully schedule but B cannot

- can successfully schedule but A cannot

‣ Venn diagram: and

A ≠ B A B
τ τ′

A τ
B τ′

Sblue ⊈ Sgreen Sgreen ⊈ Sblue

Comparing scheduling algorithms and [2/2]A B

Set of all task
sets

Set
of

all
 ta

sk
 se

ts

sc
he

du
lab

le
by

 B

Set of all task sets

schedulable by A

• EDF ________________ RM!

• Question:

‣ Two unknown algorithms and B with utilization bounds of and , respectively

- Every task set whose utilization is schedulable using

- Every task set whose utilization is schedulable using

‣ How are and related if and ?

1. A dominates B

2. A strictly dominates B

3. B dominates A

4. B strictly dominates A

5. A and B are incomparable

6. None of the above

A UA
ub UB

ub
τ U ≤ UA

ub A
τ U ≤ UB

ub B

A B UA
ub = 95 % UB

ub = 69 %

How do RM and EDF compare?

• In terms of runtime overheads, which is better? Why?

How do RM and EDF compare?

What if ? Di < Ti

A1: All jobs of are regularly activated at a constant frequency of

A2: All jobs of have the same worst-case execution time

A3. All jobs of have the same relative deadline

A4. All tasks in are independent (no dependencies, no shared resources)

τi 1/Ti

τi Ci

τi Di = Ti Ci ≤ Di ≤ Ti

τ

Recap: Assumptions

Implicit
Deadlines

Constrained
Deadlines

Ci

Recap: Aperiodic Job vs. Periodic Task

Time
si fi di or ai ri

Job Ji

Relative deadline Di

Response time Ri

Completion or
execution time Ci

Time
si fi = di or ai ri

Job Ji
Laxity or slack Xi

Time
si fidi or ai ri

Job Ji

Lateness Li

Time
 ri,0 ri,1 ri,2 ri,3

di,0 di,1 di,2

Di Di Di

Ri,0 Ri,1 Ri,2 Ri,3

Ci

τi,0 τi,1

Ci

τi,2

Ci

τi,2

si,0 fi,0 si,1 fi,1 si,2 fi,2 si,3 fi,3

Time period Ti Time period Ti Time period Ti

Zi,k

Some property

‣ response time

‣ slack

‣ lateness

‣ etc.

Z

Corresponding
to task τi

Corresponding to the
 activation of task kth τi

Task response time 
Ri = max

k
(Ri,k)

Why would you want ?Di ≤ Ti

Is RM still optimal?

Do RM utilization bounds still hold?

Rate Deadline Monotonic Scheduling (DM)

• Like RM, DM is optimal
‣ If a task set is schedulable by some fixed priority algorithm, it is also schedulable by DM

‣ Proof of DM’s optimality is similar to the one for RM

Is DM optimal among all fixed-priority algorithms?

Schedulability Analysis for DM
• For simplicity: such that

• DM assigns the highest priority to , then to , and so on …

• Sketch:

‣ Analyze one task at a time

- E.g., let’s analyze whether will meet all its deadlines.

‣ Consider any arbitrary job of

- E.g., let’s consider its job , which is released at and whose deadline is at

‣ Consider another arbitrary task with a higher priority

- E.g., let’s consider ; from our model above, this implies that and thus has a higher priority than

‣ What is the maximum duration for which task can “interfere” with job

- In other words, how often does DM schedule jobs of while job is still “pending”

- We will refer to this quantify as “interference” from to and denote its value using

‣ Schedulability analysis:

- Job does not miss its deadline if

‣ Final step: Iterate!

τ = {τ1, τ2, …, τn} D1 < D2 < … < Dn

τ1 τ2

τi

τi
kth τi,k ri,k di,k = ri,k + Di

τa (a < i) Da < Di τa τi

τa τi,k
τa τi,k

τa τi,k Ia
i,k

τi,k Ci + ∑
a<i

Ia
i,k ≤ Di

