CAN Bus Scheduling

CPEN 432 Real-Time System Design

Arpan Gujarati
University of British Columbia

Homework and Programming Assignments

e Inform us if you plan to use the skip days!

Recap: Response-Time Analysis

* Fixed-priority scheduling (RM, DM, ...) with preemptions

» Tasks7 = {7, Ty, ..., T,}

> Each task 7; has time period 7}, completion time C,, relative deadline D,
> Tasks |IDs are used as priorities

« Solve the following recurrence for each 7; to obtain its worst-case response time R,

R;
e 3|)

e Verify that either
» V1, €7: R <D, (the task set is schedulable), or

» dt, € 7: R, > D, (the task set is not schedulable)

The Controller Area Network (CAN) Bus

« CAN was designed (by Bosch 1983-1987) as a real-time bus to
reduce the number of cables required in modern cars.
— Multiplex many signals on a few wires.

e Now used in many areas, including automotive, robotics, factory
automation, etc.

e A comprehensive treatment of CAN is a course topic in itself.

e Focus here: how to carry out schedulability analysis.

© 2014 B. Brandenburg (MPI-SWS) 22

CAN Messages have Real-Time Constraints

“An ECU reads the position of a switch
attached to the brake pedal. This ECU must
send a message over the CAN network,
carrying information (a signal) that the brakes
have been applied. The ECU responsible for
the rear light clusters receives the message,
recognises the change in the value of the
signal, and switches the brake lights on. All
within a few tens of milliseconds of the brake
pedal being pressed.”

“Engine, transmission, and stability control
systems typically place even tighter time
constraints on signals, which may need to
be sent as frequently as once every 5
milliseconds to meet their time constraints”

Fig. 2 VW Passat network | Sensor-CAN
architecture E =
8l [L IT—

<1 Kombi -

AFS-CAN

CAN Antrieb

i

CAN Infotainment
— |
LM *

ﬁf

CAN Komfort
D EEEE E

LIN

‘CAN Komfort

Real-Time Syst (2007) 35:239-272
DOI 10.1007/s11241-007-9012-7

Controller Area Network (CAN) schedulability
analysis: Refuted, revisited and revised

Robert 1. Davis - Alan Burns - Reinder J. Bril -
Johan J. Lukkien

CAN Packets & Bus Arbitration

< Complete CAN Frame >
<—— Arbitration Field »<— Control —>« Data > CRC Field > 5 <End of Frame >
) " I8 i
mmmmmmmmmmmm §§ gjéﬁfﬁﬁﬁﬁﬁaaa
DATA 1|o|1|1|1|1|1|1\1\1| 1|1
CAN
HI o
CAN "
LO
Carrier Sense Multiple Access / Collision Resolution (CSMA/CR)
Hosts start sending simultaneously = lowest-ID message wins.
© 2014 B. Brandenburg (MPI-SWS)

23 .

Non-Preemptive Fixed-Priority Scheduling

e Just like regular fixed-priority scheduling...
— Message types = tasks
— message = job
— WCET = message length / bit rate
— period, deadline, jitter, phase as before.

e ..butlower-priority executing tasks / messages in transmission
cannot be preempted.

— Need to account for priority inversions.

© 2014 B. Brandenburg (MPI-SWS)

24

Classic Analysis (for Constrained Deadlines)

Intuition: It's just fixed-priority RTA with maximum priority inversion
length = maximum lower-priority message length.

Ri:Ci+Bi+Z[[%] .ca]

I a<i a
where B; = max C,, .

b>1 New “blocking” term for
non-preemptive scheduling

© 2014 B. Brandenburg (MPI-SWS) 25

Approach In the previous lecture ...

» Define recurrence function using C; and B,

R™
R = C. + B. + |- C
> I l l Z T a

a<i a

» For non-preemptive scheduling, we can move C; outside the recurrence

> Define R, = C; + W. such that W, denotes the maximum waiting time after release

>

I

a

W
. . .) _ i
W. is obtained by solving the recurrence Wl.(”+) =B, + E [[] ' Ca]

a<i

Exam Ie The task set is schedulable! TaskID T D C Priority
p > Messages with identical SRR s B R S

parameters can be successfuly == ==~ VIV
R =C+W,=C, +B, =2 transmitted over CAN 2 35 325 1 2 (medium)

...

» 1ms + 1ms = 2ms?

WO _
W = max(Cy) + ¥ (2| Ca> * Ry =G+ Wy
g b>2 T _ _
i a_<2 a 2 W3(O)
W W = max(C,) + . C
(1) — 2 _|. . 3 b a
R W2 C3 + Tl Cl li>2 _ 0<) | Ta _
» Starting with WZ(O) = 1 (why?) W) — W3(O) .C. + W3(O) e
WO s > '3 T 1 K 2
) 5 1 1 2
- W =G5A - Ci=14+|—|-1=2ms
I 2.5 » Starting with W3(O) = 2 (why?)
W® = C; A Wy -C=1+_i_-1=2ms W(1)=_i_-1+_i_-1=1+1=2ms
M) 3 T, 1 9 > 3 2.5 3.5

5
~ We have a fixed point! R, = C, + W, = 1 4+ 2 = 3ms? » We have a fixed point already! R, = C; + Wy =1 + 2 = 3ms?

“In the early 1990s, a common misconception about CAN was that although the
protocol was very good at transmitting the highest priority message with low

N N
latency, it was not possible to guarantee that less urgent signals, carried In I I I I I e I I n e

lower priority messages, would meet their deadlines.” [emphasis added]

“In 1995, Tindell’s research was recognised by Volvo Car Corporation and successfully
used in the configuration and analysis of the CAN buses for the forthcoming Volvo S80
(P23) (Casparsson et al., 1998). Following the success of this project, VVolcano
Communications Technologies ABS3 used Tindell’s analysis as the basis of a commercial
CAN schedulability analysis tool, called Volcano Network Architect.” [emphasis added]

F_JH l

1994 1995 2005 2006\ Flaw In the
analysis!

“Prior to Tindell’s work, low levels of bus utilization, up to 30 or 40%, were typical in automotive applications,
with extensive testing required to obtain confidence that CAN messages would meet their deadlines. With the
advent of a systematic approach based on schedulability analysis, CAN bus utilization could be increased
to around 80% (DeMeis, 2005) whilst still guaranteeing that deadlines would be met.” [emphasis added]

“Tindell and Burns (1994) and Tindell et al. (1994b, 1995) showed how research into fixed priority pre-emptive
scheduling for single processor systems could be adapted and applied to the scheduling of messages on CAN. This
analysis provided a method of calculating the worst-case response times of all CAN messages. Using this analysis it

became possible to engineer CAN based systems for timing correctness, providing guarantees that all messages, and
the signals that they carry, would meet their deadlines.” [emphasis added]

Classic Analysis (for Constrained Deadlines)

Intuition: It's just fixed-priority RTA with maximum priority inversion
length = maximum lower-priority message length.

R=C+B+) [?] .C,

a<i a

where B; = max C, . Reinder Bril®"°° showed this to be wrong...
b>i —_—

Briloé R. Bril (2006). Existing worst-case response time analysis of real-time tasks under fixed-priority scheduling with
deferred pre-emption is too optimistic. CS-Report 06-05, Technische Universiteit Eindhoven.

© 2014 B. Brandenburg (MPI-SWS) 25

Exa ple The task set is schedulable! TaskID T D C Priority
I I l > Messages with identical _ %1(high)

parameters can be SUCCeSSfU”y R
transmitted over CAN 2 35 325 1 2 (medium)

...

Our analysis showed that R; = 2ms, R, = 3ms, Ry = 3ms 3 35325 1 3(ow)

Let’s see why the analysis is wrong ...

Revised Analysis

* Naive classic analysis does not reflect that higher-
priority demand is “pushed through” due to non-
preemptive execution

o Solution: Consider the response times of all
messages after the critical instant, not just the first

 Read the following paper if you are interested!

 There may be a homework assignment question :-)

Real-Time Syst (2007) 35:239-272
DOI 10.1007/s11241-007-9012-7

Controller Area Network (CAN) schedulability
analysis: Refuted, revisited and revised

Robert 1. Davis - Alan Burns - Reinder J. Bril -
Johan J. Lukkien

Published online: 30 January 2007
© Springer Science 4 Business Media, LLC 2007

Abstract Controller Area Network (CAN) is used extensively in automotive applica-
tions, with in excess of 400 million CAN enabled microcontrollers manufactured each
year. In 1994 schedulability analysis was developed for CAN, showing how worst-case
response times of CAN messages could be calculated and hence guarantees provided
that message response times would not exceed their deadlines. This seminal research
has been cited in over 200 subsequent papers and transferred to industry in the form of
commercial CAN schedulability analysis tools. These tools have been used by a large
number of major automotive manufacturers in the design of in-vehicle networks for a
wide range of cars, millions of which have been manufactured during the last decade.

This paper shows that the original schedulability analysis given for CAN messages
is flawed. It may provide guarantees for messages that will in fact miss their dead-
lines in the worst-case. This paper provides revised analysis resolving the problems
with the original approach. Further, it highlights that the priority assignment policy,
previously claimed to be optimal for CAN, is not in fact optimal and cites a method
of obtaining an optimal priority ordering that is applicable to CAN. The paper dis-
cusses the possible impact on commercial CAN systems designed and developed using
flawed schedulability analysis and makes recommendations for the revision of CAN
schedulability analysis tools.

R. I. Davis () - A. Burns

Real-Time Systems Research Group, Department of Computer Science, University of York,
YO10 5DD, York, UK

e-mail: rob.davis@cs.york.ac.uk

A. Burns
e-mail: alan.burns @cs.york.ac.uk

R. J. Bril - J. J. Lukkien
Technische Universiteit Eindhoven (TU/e), Den Dolech 2, 5600 AZ Eindhoven, The Netherlands
e-mail: r.j.bril@tue.nl

J. J. Lukkien
e-mail: j.j.lukkien @tue.nl

@ Springer

Resource Sharing

Task Coordination and Synchronization

So far we have assumed that tasks are independent. However, this often
not the case in practice.

Two types of coordination:

1. mutual exclusion constraints — resource sharing with locks
— mutex_Llock()/mutex_unlock()

2. precedence constraints — when one job must wait for another
— producer-consumer or signal()/wait() relationships
— pipe() or socket() + blocking read()

© 2014 B. Brandenburg (MPI-SWS)

Mutual Exclusion

How to deal with delays due to locking?

B. Brandenburg (MPI-SWS)

Need for Mutual Exclusion

Classic problem: prevent the interleaving of critical sections to ensure
atomicity of multiple read/write accesses.

Examples of shared resources:

e accessing control registers of an |/O device
e shared OS services (e.g., timer facility, run queue)
e shared data structures (e.g., history of sensor data)

* message buffers (e.g., pipe() implementation)

© 2014 B. Brandenburg (MPI-SWS)

How to Realize Mutual Exclusion

Three main options:

e use a static schedule that prevents interleaving of accesses
— good solution when possible

e use locks (or binary semaphores) to block interleaving of accsesses
— need to analyze extra delays due to blocking! (= blocking analysis)

e restrict access to a single sequential task (a server task) and invoke
resource server via inter-process communication (IPC)
— need to analyze delay due to message backlog! (= blocking analysis)

© 2014 B. Brandenburg (MPI-SWS)

The Key Locking Problem — Priority Inversion

Priority-based scheduling: at any time, the highest-priority
iIncomplete job should be scheduled.
— this assumption is the basis of all schedulability analysis!

Problem: what if the highest-priority job requires a lock?

Priority inversion: a job should be scheduled but is not.
— On a uniprocessor: a lower-priority job is scheduled instead.
— Only possible if some lower-priority job holds a required lock

© 2014 B. Brandenburg (MPI-SWS)

Priority Inversion Example

* No useful response times with “unbounded” priority inversions!

