
CAN Bus Scheduling
CPEN 432 Real-Time System Design

Arpan Gujarati

University of British Columbia

1

Homework and Programming Assignments

• Inform us if you plan to use the skip days!

Recap: Response-Time Analysis
• Fixed-priority scheduling (RM, DM, …) with preemptions

• Tasks

‣ Each task has time period , completion time , relative deadline

‣ Tasks IDs are used as priorities

• Solve the following recurrence for each to obtain its worst-case response time

‣

• Verify that either

‣ (the task set is schedulable), or

‣ (the task set is not schedulable)

τ = {τ1, τ2, …, τn}
τi Ti Ci Di

τi Ri

Ri = Ci + ∑
a<i (⌈ Ri

Ta ⌉ ⋅ Ca)

∀τi ∈ τ : Ri ≤ Di

∃τk ∈ τ : Rk > Dk

The$Controller$Area$Network$(CAN)$Bus
• CAN%was%designed%(by%Bosch%198391987)%as%a%real9>me%bus%to%

reduce&the&number&of&cables%required%in%modern%cars.

➞%Mul>plex%many%signals%on%a%few%wires.

• Now%used%in%many%areas,%including%automo>ve,%robo>cs,%factory%

automa>on,%etc.

• A%comprehensive%treatment%of%CAN%is%a%course%topic%in%itself.

• Focus%here:%how%to%carry%out%schedulability%analysis.

©"2014"B."Brandenburg"(MPI5SWS) 22

CAN Messages have Real-Time Constraints

Real-Time Syst (2007) 35:239–272
DOI 10.1007/s11241-007-9012-7

Controller Area Network (CAN) schedulability
analysis: Refuted, revisited and revised

Robert I. Davis · Alan Burns · Reinder J. Bril ·
Johan J. Lukkien

Published online: 30 January 2007
C© Springer Science + Business Media, LLC 2007

Abstract Controller Area Network (CAN) is used extensively in automotive applica-
tions, with in excess of 400 million CAN enabled microcontrollers manufactured each
year. In 1994 schedulability analysis was developed for CAN, showing how worst-case
response times of CAN messages could be calculated and hence guarantees provided
that message response times would not exceed their deadlines. This seminal research
has been cited in over 200 subsequent papers and transferred to industry in the form of
commercial CAN schedulability analysis tools. These tools have been used by a large
number of major automotive manufacturers in the design of in-vehicle networks for a
wide range of cars, millions of which have been manufactured during the last decade.

This paper shows that the original schedulability analysis given for CAN messages
is flawed. It may provide guarantees for messages that will in fact miss their dead-
lines in the worst-case. This paper provides revised analysis resolving the problems
with the original approach. Further, it highlights that the priority assignment policy,
previously claimed to be optimal for CAN, is not in fact optimal and cites a method
of obtaining an optimal priority ordering that is applicable to CAN. The paper dis-
cusses the possible impact on commercial CAN systems designed and developed using
flawed schedulability analysis and makes recommendations for the revision of CAN
schedulability analysis tools.

R. I. Davis (!) . A. Burns
Real-Time Systems Research Group, Department of Computer Science, University of York,
YO10 5DD, York, UK
e-mail: rob.davis@cs.york.ac.uk

A. Burns
e-mail: alan.burns@cs.york.ac.uk

R. J. Bril · J. J. Lukkien
Technische Universiteit Eindhoven (TU/e), Den Dolech 2, 5600 AZ Eindhoven, The Netherlands
e-mail: r.j.bril@tue.nl

J. J. Lukkien
e-mail: j.j.lukkien@tue.nl

Springer

“An ECU reads the position of a switch
attached to the brake pedal. This ECU must
send a message over the CAN network,
carrying information (a signal) that the brakes
have been applied. The ECU responsible for
the rear light clusters receives the message,
recognises the change in the value of the
signal, and switches the brake lights on. All
within a few tens of milliseconds of the brake
pedal being pressed.”

“Engine, transmission, and stability control
systems typically place even tighter time
constraints on signals, which may need to
be sent as frequently as once every 5
milliseconds to meet their time constraints”

CAN$Packets$&BusArbitra2on

Carrier&Sense&Mul-ple&Access&/&Collision'Resolu+on&(CSMA/CR)
Hosts&start&sending&simultaneously&➔&lowest=ID&message&wins.

©"2014"B."Brandenburg"(MPI5SWS) 23

Non$Preemp*ve,Fixed$Priority,Scheduling
• Just&like®ular&fixed1priority&scheduling…

➞&Message&types&=&tasks
➞&message&=&job
➞&WCET&=&message&length&/&bit&rate
➞&period,&deadline,&jiDer,&phase&as&before.

• …but&lower1priority&execuHng&tasks&/&messages&in&transmission&
cannot&be&preempted.
➞&Need&to&account&for&priority'inversions.

©"2014"B."Brandenburg"(MPI5SWS) 24

Classic'Analysis'(for'Constrained'Deadlines)

Intui&on:"It’s"just"fixed-priority"RTA"with"maximum"priority"inversion"
length"≈"maximum"lower-priority"message"length.

,

!where! .!Reinder!BrilBril06!showed!this!to!be!wrong…

Bril06'R.'Bril'(2006).'Exis0ng'worst6case'response'0me'analysis'of'real60me'tasks'under'fixed6priority'scheduling'with'
deferred'pre6emp0on'is'too'op0mis0c.'CS6Report'06605,'Technische'Universiteit'Eindhoven.

©"2014"B."Brandenburg"(MPI5SWS) 25

Ri = Ci + Bi + ∑
a<i ⌈ Ri

Ta ⌉ ⋅ Ca

Bi = max
b>i

Cb New “blocking” term for
non-preemptive scheduling

Approach in the previous lecture …

• Define recurrence function using and

‣

• For non-preemptive scheduling, we can move outside the recurrence

‣ Define such that denotes the maximum waiting time after release

‣
 is obtained by solving the recurrence

Ci Bi

R(n+1)
i = Ci + Bi + ∑

a<i ⌈
R(n)

i

Ta ⌉ ⋅ Ca

Ci
Ri = Ci + Wi Wi

Wi W(n+1)
i = Bi + ∑

a<i ⌈
W(n)

i

Ta ⌉ ⋅ Ca

Example Task ID T D C Priority

1 2.5 2.5 1 1 (high)

2 3.5 3.25 1 2 (medium)

3 3.5 3.25 1 3 (low)

•

‣

•

‣

‣

‣ Starting with (why?)

‣

‣

‣ We have a fixed point!

R1 = C1 + W1 = C1 + B1 = ?
1ms + 1ms = 2ms?

R2 = C2 + W2

W(1)
2 = max

b>2
(Cb) + ∑

a<2 (⌈
W(0)

2

Ta ⌉ ⋅ Ca)
W(1)

2 = C3 + ⌈
W(0)

2

T1 ⌉ ⋅ C1

W(0)
2 = 1

W(1)
2 = C3 + ⌈

W(0)
2

T1 ⌉ ⋅ C1 = 1 + ⌈ 1
2.5 ⌉ ⋅ 1 = 2ms

W(2)
2 = C3 + ⌈

W(1)
2

T1 ⌉ ⋅ C1 = 1 + ⌈ 2
2.5 ⌉ ⋅ 1 = 2ms

R2 = C2 + W2 = 1 + 2 = 3ms?

•

‣

‣

‣ Starting with (why?)

‣

‣ We have a fixed point already!

R3 = C3 + W3

W(1)
3 = max

b>2
(Cb) + ∑

a<2 ⌈
W(0)

3

Ta ⌉ ⋅ Ca

W(1)
3 = ⌈

W(0)
3

T1 ⌉ ⋅ C1 + ⌈
W(0)

3

T2 ⌉ ⋅ C2

W(0)
3 = 2

W(1)
3 = ⌈ 2

2.5 ⌉ ⋅ 1 + ⌈ 2
3.5 ⌉ ⋅ 1 = 1 + 1 = 2ms

R3 = C3 + W3 = 1 + 2 = 3ms?

The task set is schedulable!

‣ Messages with identical

parameters can be successfully
transmitted over CAN

1987 1994

}
“In the early 1990s, a common misconception about CAN was that although the
protocol was very good at transmitting the highest priority message with low
latency, it was not possible to guarantee that less urgent signals, carried in
lower priority messages, would meet their deadlines.” [emphasis added]

1995

“In 1995, Tindell’s research was recognised by Volvo Car Corporation and successfully
used in the configuration and analysis of the CAN buses for the forthcoming Volvo S80
(P23) (Casparsson et al., 1998). Following the success of this project, Volcano
Communications Technologies AB3 used Tindell’s analysis as the basis of a commercial
CAN schedulability analysis tool, called Volcano Network Architect.” [emphasis added]}

“Prior to Tindell’s work, low levels of bus utilization, up to 30 or 40%, were typical in automotive applications,
with extensive testing required to obtain confidence that CAN messages would meet their deadlines. With the
advent of a systematic approach based on schedulability analysis, CAN bus utilization could be increased
to around 80% (DeMeis, 2005) whilst still guaranteeing that deadlines would be met.” [emphasis added]

2005 2006 Flaw in the
analysis!

“Tindell and Burns (1994) and Tindell et al. (1994b, 1995) showed how research into fixed priority pre-emptive
scheduling for single processor systems could be adapted and applied to the scheduling of messages on CAN. This
analysis provided a method of calculating the worst-case response times of all CAN messages. Using this analysis it
became possible to engineer CAN based systems for timing correctness, providing guarantees that all messages, and
the signals that they carry, would meet their deadlines.” [emphasis added]

Timeline

Classic'Analysis'(for'Constrained'Deadlines)

Intui&on:"It’s"just"fixed-priority"RTA"with"maximum"priority"inversion"
length"≈"maximum"lower-priority"message"length.

,

!where! .!Reinder!BrilBril06!showed!this!to!be!wrong…

Bril06'R.'Bril'(2006).'Exis0ng'worst6case'response'0me'analysis'of'real60me'tasks'under'fixed6priority'scheduling'with'
deferred'pre6emp0on'is'too'op0mis0c.'CS6Report'06605,'Technische'Universiteit'Eindhoven.

©"2014"B."Brandenburg"(MPI5SWS) 25

Ri = Ci + Bi + ∑
a<i ⌈ Ri

Ta ⌉ ⋅ Ca

Bi = max
b>i

Cb

Example
Our analysis showed that

Let’s see why the analysis is wrong …

R1 = 2ms, R2 = 3ms, R3 = 3ms

Task ID T D C Priority

1 2.5 2.5 1 1 (high)

2 3.5 3.25 1 2 (medium)

3 3.5 3.25 1 3 (low)

The task set is schedulable!

‣ Messages with identical

parameters can be successfully
transmitted over CAN

Revised Analysis
• Naive classic analysis does not reflect that higher-

priority demand is “pushed through” due to non-
preemptive execution

• Solution: Consider the response times of all
messages after the critical instant, not just the first

• Read the following paper if you are interested!

• There may be a homework assignment question :-)

Real-Time Syst (2007) 35:239–272
DOI 10.1007/s11241-007-9012-7

Controller Area Network (CAN) schedulability
analysis: Refuted, revisited and revised

Robert I. Davis · Alan Burns · Reinder J. Bril ·
Johan J. Lukkien

Published online: 30 January 2007
C© Springer Science + Business Media, LLC 2007

Abstract Controller Area Network (CAN) is used extensively in automotive applica-
tions, with in excess of 400 million CAN enabled microcontrollers manufactured each
year. In 1994 schedulability analysis was developed for CAN, showing how worst-case
response times of CAN messages could be calculated and hence guarantees provided
that message response times would not exceed their deadlines. This seminal research
has been cited in over 200 subsequent papers and transferred to industry in the form of
commercial CAN schedulability analysis tools. These tools have been used by a large
number of major automotive manufacturers in the design of in-vehicle networks for a
wide range of cars, millions of which have been manufactured during the last decade.

This paper shows that the original schedulability analysis given for CAN messages
is flawed. It may provide guarantees for messages that will in fact miss their dead-
lines in the worst-case. This paper provides revised analysis resolving the problems
with the original approach. Further, it highlights that the priority assignment policy,
previously claimed to be optimal for CAN, is not in fact optimal and cites a method
of obtaining an optimal priority ordering that is applicable to CAN. The paper dis-
cusses the possible impact on commercial CAN systems designed and developed using
flawed schedulability analysis and makes recommendations for the revision of CAN
schedulability analysis tools.

R. I. Davis (!) . A. Burns
Real-Time Systems Research Group, Department of Computer Science, University of York,
YO10 5DD, York, UK
e-mail: rob.davis@cs.york.ac.uk

A. Burns
e-mail: alan.burns@cs.york.ac.uk

R. J. Bril · J. J. Lukkien
Technische Universiteit Eindhoven (TU/e), Den Dolech 2, 5600 AZ Eindhoven, The Netherlands
e-mail: r.j.bril@tue.nl

J. J. Lukkien
e-mail: j.j.lukkien@tue.nl

Springer

Resource Sharing

Task%Coordina,on%and%Synchroniza,on

So#far#we#have#assumed#that#tasks#are#independent.#However,#this#o5en#
not#the#case#in#prac9ce.

Two$types$of$coordina1on:

1. mutual&exclusion&constraints#—##resource#sharing#with#locks
➞#mutex_lock()/mutex_unlock()

2. precedence&constraints#—#when#one#job#must#wait#for#another
➞#producer<consumer#or#signal()/wait()#rela=onships
➞#pipe()#or#socket()#+#blocking#read()

©"2014"B."Brandenburg"(MPI5SWS) 2

Mutual&Exclusion
Howtodeal$with$delaysdueto$locking?

©"2014"B."Brandenburg"(MPI5SWS) 3

NeedforMutual$Exclusion

Classic'problem:'prevent'the'interleaving'of'cri$cal'sec$ons'to'ensure'
atomicity'of'mul6ple'read/write'accesses.

Examples)of)shared'resources:

• accessing)control)registers)of)an)I/O)device

• shared)OS)services)(e.g.,)9mer)facility,)run)queue)

• shared)data)structures)(e.g.,)history)of)sensor)data)

• message)buffers)(e.g.,)pipe())implementa9on)

©"2014"B."Brandenburg"(MPI5SWS) 4

HowtoRealize$Mutual$Exclusion

Three%main%op,ons:

• use%a%sta$c&schedule%that%prevents%interleaving%of%accesses
➞%good%solu4on%when%possible

• use%locks%(or%binary'semaphores)%to%block%interleaving%of%accsesses
➞%need'to'analyze'extra'delays'due'to'blocking!%(=%blocking%analysis)

• restrict%access%to%a%single%sequen4al%task%(a%server&task)%and%invoke%
resource%server%via%inter8process'communica9on%(IPC)
➞%need'to'analyze'delay'due'to'message'backlog!%(=%blocking%analysis)

©"2014"B."Brandenburg"(MPI5SWS) 5

TheKeyLocking$Problem$—$Priority$Inversion

Priority'based-scheduling:"at"any"'me,"the"highest/priority"
incomplete"job"should"be"scheduled.
➞"this"assump'on"is"the"basis"of"all"schedulability"analysis!

Problem:"what"if"the"highest,priority"job"requires"a"lock?

Priority'inversion:"a"job"should"be"scheduled"but"is"not.
➞"On"a"uniprocessor:"a"lower.priority"job"is"scheduled"instead.
➞"Only"possible"if"some"lower9priority"job"holds"a"required'lock

©"2014"B."Brandenburg"(MPI5SWS) 6

Priority Inversion Example
• No useful response times with “unbounded” priority inversions!

