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Embedded Real-Time Systems

What is an embedded system?
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Embedded Real-Time Systems

An introduction

» Computer system hidden (embedded) in other systems
= Often interacts with the physical environment

= Purpose built
= End users see “smart” device rather then computer

= Special-purpose vs. general-purpose computing
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Embedded Real-Time Systems

Embedded, Everywhere

Embedded,
Everywhere
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Embedded Real-Time Systems

Embedded, Everywhere - Internet of Things

People Connecting Machines Connecting to Machines
Through Machines and the Physical Environment
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Embedded Real-Time Systems

Embedded in Your Daily Life

» How many micro-controllers are around you?
Bathroom scale with digital read out

Iron that turns itself off automatically

Electronic toothbrush (with ~3000 lines of code)

Cooking range

Laundry machine and dryer
Toaster

Microwave

Home-security

TV, cable-box, AV system
Game console

Thermostat

Cars, Toys, Medical Devices...
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Embedded Real-Time Systems

What is driving the
embedded explosion?

'(9' Ef\clt&ﬁl\ﬁg%ﬁn | [{itf;r 7 Carnegie Mellon University



Embedded Real-Time Systems

Moore’ s Law (a statement about economics):
IC transistor count doubles every 18-24 mo
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Flash memory scaling:

Embedded Real-Time Systems

Rise of density & volumes; Fall (and rise) of prices

NAND Flash: Bit Volume vs Capex
== NAND Bit Vol === Flash Capex ($M)
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Embedded Real-Time Systems
4 (11 ””
Hendy s "Law :
Pixels per dollar doubles annually

The Pixels per Dollar Projection
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Embedded Real-Time Systems

Dennard Scaling made transistors fast and low-power:
So everything got better!

Design of Ion-Implanted MOSFET’s with
Very Small Physical Dimensions

ROBERT H. DENNARD, MEMBER, IEEE, FRITZ H. GAENSSLEN, HWA-NIEN YU, MEMBER, IEEE,
V. LEO RIDEOUT, MEMBER, IEEE, ERNEST BASSOUS, AND ANDRE R. LEBLANC, MEMBER, IEEE

Classic Paper

This paper considers the design, fabrication, and characteniza-
tion of very small MOSFET switching devices suitable for digital
integrated circuits using dimensions of the order of 1 . Scaling
relationships are presented which show how a conventional MOS-
FET can be reduced in size. An improved small device structure
is presented that uses ion implantation to provide shallow sowrce
and drain regions and a nonuniform substrate doping profile. One-
dimensional models are used to predict the substrate doping profile
and the corresponding threshold voltage versus sowrce voltage
characteristic. A two-dimensional cwrrent transport model is used
to predict the relative degt« of short-channel effects for different
device p Polysili MOSFET s with
chamd lengths as short as 0.5 : were fabricated, and the device
characteristics measwred and compared with predicted values. The
performance improvement expected from using these very small
devices in highly miniaturized integrated circuits is projected.

I LisT oF SyMBOLS

w Inverse semilogarithmic slope of sub-
threshold characteristic.

D ‘Width of idealized step function pro-
file for channel implant.

Awy Work function difference between
gate and substrate.

25 Cox Dielectric constants for silicon and
silicon dioxide

14 Drain current.

k Boltzmann's constant.

' Unitless scaling constant.

L MOSFET channel length.

Pt Effective surface mobility.

T Intrinsic camier concentration.

N, Substrate acceptor concentration.

W, Band bending in silicon at the onset
of strong inversion for zero substrate
voltage.

W, Built-in junction potential.

This paper is reprinted from IEEE JOURNAL OF SOUD-STATE CIRCUITS,
wol. SC-9, no. 5, pp. 256-268, October 1974.
Publisher Item Identiier S 0018-521(99)02196-9.
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portion of the region in the silicon substrate under the gate
electrode. For switching applications, the most undesirable
“short-channel” effect is a reduction in the gate threshold
voltage at which the device tums on, which is aggravated
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Fig. 2. Experimental dram voltage characteniztics for (a) conven-
tozal, and (b) scaled-down structures shown m Fip. 1 normalized
to IV/L 1.
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DARPA

al-Time Systems

Industry’s ride is over

The past: Dennard’s Scaling

Gate 7 Geometry
Shﬂnk

Pdensxty N, C}oad 23
= power per unit area
N, = CMOS gates/unit area

Cyp2q = capacitive load/CMOS gate

V' = supply voltage

f = clock frequency

k = scaling factor

k = typically 1.4 per geometry shrink

1/k = device feature scaling factor
(typically 0.7 per geometry shrink)

For each generation/geometry shrink:

l)denSIty (scaling) —

= (k»)(1/k)A/k%)(k) =1

Double the transistors (functionality) and increase the
clock speed 40% per generation with the same power

Today: Dennard’s Scaling is dead
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But, power density cannot increase!

Source S. Borkar/Intel 2011

l)densny (scaling) —

This physics is limiting COTS
power efficiency to well below
what we need for embedded sensor
processing applications
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Embedded Real-Time Systems

Decades of exponential performance growth stalled in 2004
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Not so fast! Bell’s Law of Computer Classes:
A new computing class roughly every decade
A

Number Crunching

~ Data Storage

productivity
- interactive

log (people per computer)

) year
Roughly every decade a new, lower priced computer class forms & % 12

based on a new programming platform, network, and interface
resulting in new usage and the establishment of a new industry.”
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Embedded Real-Time Systems

Technology Trends

» Multi-core embedded with SoC
= Better, cheaper, lower power sensors

» Better communication

= Bluetooth Low-Energy
= 802.154
= 802.11 AC

= Energy Harvesting
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Embedded Real-Time Systems

Why is embedded different?
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Embedded Real-Time Systems

Typical Embedded System Challenges (1-2)

= Small Size, Low Weight
= Handheld electronics
= Transportation applications weight costs money
= Low Power
= Battery power for 8+ hours (laptops often last only 2 hours)
= Limited cooling may limit power even if AC power available
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Embedded Real-Time Systems

Typical Embedded System Challenges (2-2)

=  Harsh environment
= Heat, vibration, shock
= Power fluctuations, RF interference, lightning
= \Water, corrosion, physical abuse
= Safety-critical operation
= Must function correctly
= Must not function incorrectly

=  Extreme cost sensitivity
S.05 adds up over 1,000,000 units
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CPU: An All Too Common View of Computing

m Measured by: Performance
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An Advanced Computer Engineer's View

m Measured by: Performance
= Compilers matter too...

Cache )-—> Memory

I
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An Enlightened Computer Engineer's View

m Measured by: Performance, Cost
= Compilers & OS matter

Cache )-» Memory

I
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An Embedded Computer Designer's View

m Measured by: Cost, I/O connections, Memory Size, Performance

Memory

Cache
Microcontroller I

A/D D/A

A 4

v

MMI I/0
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An Embedded Application Designer's View

m Measured by: Cost, Timetomarket, Cost, Functionality, Cost & Cost.

Memory
A

Cache
Microcontroller I

Sensors » A/ID D/IA

A 4

Actuatpr

A A

A 4 A 4

Diagnostic MM 1o Auxiliary Systems
tools (power, cooling)

Electro-mechanical
backup and safety

External
Environment
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Modern Embedded Systems View

m Measured by: Does it actually work? (and all of the other stuff)

Distributed!

Network

Microcontroller

| Sensors I—»I AID CPU

Diagnostic
tools

v
MM || o

Auxiliary Systems
power, cooling

Electro-mechanica
backup and safety
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| Sensors I—
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Embedded Real-Time Systems

Embedded Computers Rule the Marketplace

= ~80 Million PCs vs. ~3 Billion Embedded CPUs annually

= Embedded market growing; PC market mostly saturated

= Domain Experts Needed...
= General Computing
= Set-top boxes, video game consoles, ATM, ...
= Control Systems
= Airplane, Heating and Cooling System
= Signal Processing
= Radar, Sonar, Video Compression, Human-Brain interface

= Communication

= |nternet, Wireless Communication, VolP...
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Embedded Real-Time Systems

Embedded Systems Careers

s
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Embedded Real-Time Systems

Misconceptions (1)

» Embedded systems = low end microcontrollers

Automotive airbag
control system

Elevator control
r ‘| Wireless Sensors

Remote Keyless
Entry
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Embedded Real-Time Systems

Misconceptions (2)

» Embedded system programing = programming in
assembly to optimize the code for space, time etc.

= Compilers are typically better then humans at generating
the best code

» Code portability issues -> some device-driver dependent
code written in assembly, but most app code is written in
higher-level languages
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Embedded Real-Time Systems

Misconceptions (3)

» Embedded systems = old topic

= Always new and exciting developments that track
technology
= New sensors / actuators
= More powerful chips
= New communication mechanisms

* Embedded systems + Internet = Internet of Things
= Massively hot topic right now!
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