
Embedded	Real-Time	Systems

18-349: Embedded Real-Time Systems
Lecture 2: ARM Architecture

Anthony Rowe
Electrical and Computer Engineering
Carnegie Mellon University

Embedded	Real-Time	Systems

Basic Computer Architecture

2

Embedded	Real-Time	Systems

Memory Types
§ DRAM: Dynamic Random Access Memory

§ Upside: very dense (1 transistor per bit) and cheap
§ Downside: requires refresh and often slow
§ Used as main memory

§ SRAM: Static Random Access Memory
§ Upside: fast and no refresh required
§ Downside: not so dense, not so cheap
§ Often used for caches

§ EEPROM: Electronically Erasable Programmable Read-only Memory
§ Used for bootstrapping
§ Require wear-leveling

3

Embedded	Real-Time	Systems

Big Endian vs. Little Endian
§ How is a word, say, 0x1234567 stored in memory?

4

Embedded	Real-Time	Systems

Big Endian vs. Little Endian
§ Big-endian (big end first)

§ Most significant byte of any multi-byte data field is stored at the lowest
memory address

§ Reading from left to right
§ SPARC & Motorola

§ Little-endian (little end first)
§ Least significant byte of any multi-byte data field is stored at the lowest

memory address
§ Reading from right to left instead
§ Intel processors

§ Bi-endian (ARM, PowerPC, Alpha)

5

Embedded	Real-Time	Systems

CISC vs. RISC
§ RISC – Reduced Instruction Set Computers
§ CISC – Complex Instruction Set Computers
§ Different architectures for doing the same operations
§ Suppose you wanted to multiply two numbers in memory locations

mem0 & mem1 and store the results back in mem0
§ Same result but the complexity of operations and the number of steps

used in the two cases differ

6

Embedded	Real-Time	Systems

CISC vs. RISC (1)

7

CISC	 RISC	

Example	– Intel	x86	chips	 Examples	– SPARC,	PowerPC,	ARM	

Large	number	of	instructions Few	instructions,	typically	less	than	
100	

Variable-length	instructions,	
instructions	can	range	from	1-15	
bytes	

Fixed-length	instructions,	all	
instructions	have	the	same	number	
of	bytes	

Some	instructions	can	have	long	
execution	times

No	instruction	with	a	long	
execution	times	execution	time	

Embedded	Real-Time	Systems

CISC vs. RISC (2)

8

CISC	 RISC	

Arithmetic	and	logical	operations	
can	be	applied	to	memory	and	
register	operands	

Arithmetic	and	logical	operations	
only	use	register	operands	

•	 Memory	contents	have	to	be							
loaded	into	registers	first	

•	 Referred	to	as	load/store					
architecture	

Stack-intensive	procedure	linkage	
•	Stack	is	used	for	procedure		
arguments	and	return	values	

Register-intensive	procedure	
linkage	

•	Registers	used	for	procedure	
arguments	and	return	values	

Embedded	Real-Time	Systems

CISC vs. RISC (3)

9

CISC	 RISC	

Compact	code	size	is	typically	small Compiled	code	size	is	larger

More	transistors	=	more	power Fewer	transistors =	less	power

Embedded	Real-Time	Systems

ARM, Ltd.
§ Founded in November 1990

§ Spun out of Acorn Computers based in U.K.
§ ARM was originally Acorn RISC Machine; then, Advanced RISC Machine

§ Most widely used 32-bit instruction-set architecture in terms of volume
§ 6.1 billion ARM processors in 2010 up to 15 billion in 2015
§ 95% of all smartphones, 35% of digital TVs and set-top boxes

§ ARM architecture can be licensed, with licensees (former and/or current)
§ AMD, Apple, Freescale, Microsoft, Nintendo, Xilinx, Qualcomm, TI, etc.

§ Companies design custom CPU cores with ARM instruction set
§ Qualcomm’s Snapdragon, Apple’s A8, etc.

§ ARM Ltd. does not fabricate processors itself
§ Also develops technologies to help with the design-in of ARM devices
§ Software tools, boards, debug hardware, application software, buses, peripherals

10

Embedded	Real-Time	Systems

History of ARM’s Usage

11

Embedded	Real-Time	Systems

SoftBank Acquisition
§ Japanese multinational company
§ July 18th 2016
§ Purchased for £23.4 billion
§ Speculating on IoT market

12

Embedded	Real-Time	Systems

ARM Everywhere

13

Embedded	Real-Time	Systems

The ARM Family

14

Embedded	Real-Time	Systems

Different ARM Core Families
§ Cortex-A

§ Application processors
§ Single-core or multi-core
§ Optional multimedia processing
§ Optional floating-point units
§ Smartphones, tablets, digital TVs, eBook readers

§ Cortex-R
§ Deeply embedded real-time applications
§ Low power, good interrupt behavior with good performance
§ Automotive braking systems, printers, storage controllers

§ Cortex-M
§ Cost-sensitive microcontrollers
§ Fast, deterministic interrupt management
§ Lowest possible power consumption
§ Automotive airbags, tire-pressure monitoring, smart meters, sensors

15

Embedded	Real-Time	Systems

Cortex-M Family

16

Embedded	Real-Time	Systems

Beyond Cortex

17

Break?

Embedded	Real-Time	Systems

ARM Data Sizes & Instructions
§ The ARM is a 32-bit RISC architecture

§ When used in relation to the ARM
§ Byte means 8-bits
§ Halfword means 16 bits (two bytes)
§ Word means 32 bits (four bytes)

§ Most ARM processors implement two instructions sets
§ 32-bit ARM Instructions Set
§ 16-bit Thumb Instruction Set

§ Bi-endian
§ Can be configured to view words stored in memory as either Big-endian

or Little-Endian Format

18

Embedded	Real-Time	Systems

ARM is a RISC Architecture
§ A large array of uniform registers

§ A load/store model, where
§ Operations operate only on register and not directly on memory
§ All data must be loaded into registers before being used
§ Result (in a register) can be further processed or stored to memory

§ A small number of addressing modes
§ All load / store addresses are determined from register and isntruction

fields

§ A uniform fixed-length instruction (32-bit)

19

Embedded	Real-Time	Systems

Programmer’s Model
§ ARM supports seven processor modes

§ Characterized by specific behavior, privileges, associated registers
§ Mode changes can be made under software control, or be caused by

external interrupts or exception processing

§ Most applications execute in User mode
§ Program cannot access certain protected resources
§ Program cannot change mode without causing an exception

§ The 6 modes other then user mode are called privileged modes
§ 5 of these privileged modes are called exception modes
§ The remaining one is called the System mode (same as User mode,

but with access to protected resources)

20

Embedded	Real-Time	Systems

The Seven Modes

21

Embedded	Real-Time	Systems

Register Set (1)
§ ARM has a total of 37 registers all of which are 32-bit

§ 30 general-purpose registers
§ 1 dedicated program counter (pc)
§ 1 dedicated current program status register (cpsr)
§ 5 dedicated saved program status registers (spsr)

§ In any mode, only a subset of these 37 registers are visible
§ The hidden registers are called banked registers
§ The current processor-mode governs which registers are visible

22

Embedded	Real-Time	Systems

Register Set (2)
§ r0 through r7: Eight general-purpose registers that are always

available, no matter which mode you’re in (8)

§ r8 through r12: Five general-purpose registers that are common to
all processor modes other than fiq mode (5)

§ r8_fiq through r12_fiq: Five registers that replace the normal r8-r12
when the processor is in fiq mode (5)

§ Special-purpose registers
§ r13 (stack pointer): Same for System and User mode, otherwise,

r13_fiq, r13_svc, r13_abt, r13_irq, r13_und (6)
§ r14 (link register): Same for System and User mode, otherwise,

r14_fiq, r14_svc, r14_abt, r14_irq, r14_und (6)
§ r15 (program counter): A unique one across all modes (1)

23

Embedded	Real-Time	Systems

Register Set (3)
§ Status registers

§ cpsr (current program status register): Holds current status of
processor, including its mode (1)

§ spsr (saved program status register): Holds processor status
information before program changes into an exception mode, r13_fiq,
r13_svc, r13_abt, r13_irq, r13_und (5)

24

Embedded	Real-Time	Systems

Register Set (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
19
20

14
15
16
17
18
21
22

23
24

25
26

27
28

29
30

31

32
33 34 35 36 37

Embedded	Real-Time	Systems

Banked Registers
§ Banking of registers implies

§ The specific register depends not only on the number (r0,r1,…,r15) but
also on the processor mode

§ Values stored in banked registers are preserved across mode
changes

§ Example: Assume that the processor is executing in User Mode
§ In User mode, assume that the processor writes 0 in r0 and 8 in r8
§ Processor now changes to fiq mode

§ In FIQ mode, the value of r0 is __________
§ If processor now overwrites both r0 and r8 with 1 in fiq mode and

changes back to user mode
§ The new value stored in r0 (user mode) is _____________
§ The new value stored in r8 (user mode) is _____________

26

Embedded	Real-Time	Systems

Register Set in User Mode

27

Embedded	Real-Time	Systems

Register Set in fiq Mode

28

Embedded	Real-Time	Systems

Thumb Mode
§ Thumb is a 16-bit instruction set

§ Optimized for code density from C code (~65% of ARM code size)
§ Improved performance from narrow memory
§ Subset of the functionality of the ARM instruction set

§ Core has additional execution state – Thumb
§ Switch between ARM and Thumb using BX instruction

§ For most instructions generated by compiler:
§ Conditional execution is not used
§ Source and destination registers identical
§ Only Low registers used
§ Constants are of limited size
§ Inline barrel shifter not used

29

Embedded	Real-Time	Systems

The CPSR (1)
§ Current Program Status Register (cpsr) is a dedicated register

§ Holds information about the most recently performed ALU
operations

§ Controls the enabling and disabling of interrupts (both IRQ and FIQ)

§ Sets the processor operating mode

§ Sets the processor state

30

Embedded	Real-Time	Systems

The CPSR (2)
§ cpsr has two important pieces of information

§ Flags: contains the condition flags
§ Control: contains the processor mode, state and interrupt mask bits

§ All fields of the cpsr can be read/written in privileged modes
§ Only the flag field of cpsr can be written in User mode, all fields can be

read in User mode

31

Embedded	Real-Time	Systems

The CPSR (3)
§ Interrupt Disable bits

§ I = 1: Disables IRQ
§ F = 1: Disables FIQ

§ T Bit
§ T = 0: Processor in ARM state
§ T = 1: Processor in Thumb state

§ Mode bits
§ Specify the processor mode

When exceptions occur cpsr gets copied to the corresponding
spsr_<mode> register for storage

32

Embedded	Real-Time	Systems

The CPSR (4)

§ Will represent this as nzcvqift_mode
§ Upper case letters will indicate that a certain bit has ben set

§ Examples
§ nzcvqiFt_USER: FIQs are masked and the processor is executing in

user mode
§ nzCvqift_SVC: Carry flag is set and the processor is executing in

supervisor mode

33

Embedded	Real-Time	Systems

Exceptions vs. Interrupts
§ Term exception and interrupt are often confused!

§ Exception usually refers to an internal CPU event such as
§ Floating point overflow
§ MMU fault (e.g., page fault)
§ Trap (SWI)

§ Interrupt usually refers to an external I/O event such as
§ I/O device request
§ Reset

§ In the ARM architecture manuals, the two terms are mixed together
and are considered interchangeable

34

Embedded	Real-Time	Systems

ARM Exceptions
Exception Mode Description

Reset	 Supervisor	

Occurs	when	the	processor�s	reset	button	is	asserted.	This	exception	
is	only	expected	to	occur	for	signaling	power	up	or	for	resetting	the	
processor.	A	soft	reset	can	be	achieved	by	branching	to	reset	vector	
0x00000000	or	letting	the	watchdog	timer	expire	

Undefined	Instruction	 Undef Occurs	if	neither	the	processor,	nor	any	of	the	coprocessors,	
recognize	the	currently	executing	instruction	

Software	Interrupt	 Supervisor	
This	is	a	user-defined	synchronous	interrupt.	It	allows	a	program	
running	in	the	User	mode	to	request	privileged	operations	(for	
example	an	RTOS	function)	that	run	in	Supervisor	mode	

Prefetch	Abort	 Abort	 Occurs	when	a	processor	attempts	to	execute	an	instruction	that	
was	not	fetched,	because	the	address	was	illegal	

Data	Abort	 Abort	 Occurs	when	a	data	transfer	instruction	attempts	to	load	or	store	
data	at	an	illegal	address	

IRQ	 IRQ	 Occurs	when	the	processor�s	external	interrupt	request	pin	is	
asserted	and	the	I	bit	in	the	cpsr is	clear	

FIQ	 FIQ	 Occurs	when	the	processor�s	external	fast	interrupt	request	pin	is	
asserted	and	the	I	(F-bit???)	bit	in	the	cpsr is	clear	

35

Embedded	Real-Time	Systems

ARM Exception Handling (1)
§ Exception Handler

§ Most exceptions have an associated software exception handler that
executes when that particular exception occurs

§ Exception modes and registers
§ Handling exceptions changes program from user to non-user mode
§ Each exception handler has access to its own set of registers

§ Its own r13 (stack pointer)
§ Its own r14 (link register)
§ Its own spsr (Saved Program Status Register)

§ Exception handlers must save (restore) other registers on entry (exit)

36

Embedded	Real-Time	Systems

ARM Exception Handling (2)
§ Where is the is exception

handler located?

§ Vector table
§ Reserved area of 32 bytes at

the end of the memory map
(starting at address 0x0)

§ One word of space for each
exception type

§ Contains a Branch or Load
PC instruction for the
exception handler

37

Embedded	Real-Time	Systems

ARM Exception Handling (3)
§ When an exception occurs, the ARM processor:

§ Copies cpsr into spsr_<mode>
§ Sets appropriate cpsr bits

§ Change to ARM state
§ Change to exception mode
§ Disable interrupts (if appropriate)

§ Stores the return address in lr_<mode>
§ Sets pc to vector address

§ To return, exception handler needs to:
§ Restore cpsr from the spsr_<mode>
§ Restore pc from lr_<mode>

38

Embedded	Real-Time	Systems

Simultaneous Exceptions?

39

Embedded	Real-Time	Systems

Why Exceptions?
§ Functionality that would otherwise not be possible

§ Memory or Data Abort can be used to implement Virtual Memory

§ SWI allows for system calls

§ Undefined exceptions can be used to provide software emulation of
coprocessor when the coprocessor is not physically present or could
be used for special purpose instruction set extensions
§ If an unknown instruction is reached the processor changes to

Undefined mode and executes the Undefined Instruction exception
handler

§ In the exception handler, the coprocessor functionality can be provided
in software (or the functionality provided by the enhanced instrucionts
can be provided in software)

40

Embedded	Real-Time	Systems

Summary
§ What is an ARM?

§ CISC vs RISC
§ ARM family
§ Memory

§ ARM Architecture from a programmer’s viewpoint
§ Processor modes
§ General purpose registers
§ Special purpose registers
§ Exception handling

§ Next Time: Deeper into ARM ASM

41

