
Embedded	Real-Time	Systems

18-349: Introduction to Embedded
Real-Time Systems

Lecture 4: ARM ASM Part 2
Anthony Rowe
Electrical and Computer Engineering
Carnegie Mellon University

Embedded	Real-Time	Systems

Kaboom Explained…

2

Power	Switch…
MIC94091	vs	MIC94092

Embedded	Real-Time	Systems

Last Lecture
§ Exceptions

§ Vector Table

§ Pipelining
§ What is it?
§ Why do we do it?

§ ARM ISA Introduction
§ Move operations
§ Arithmetic operations
§ Logical operations
§ Comparison operations
§ Multiply operations
§ Conditionals

3

Embedded	Real-Time	Systems

ARM ISA Quick Reference

4

Embedded	Real-Time	Systems

Branch Instructions
§ To change the flow of execution or to call a routine

§ Supports subroutine calls, if-then-else structures, loops

§ Change of execution forces the pc to point to a new address

§ Different branch instructions on the ARM
§ B{<cond>} label

§ BL{<cond>} label

§ BX{<cond>} Rm

5

Embedded	Real-Time	Systems

Lecture Overview
§ ARM ASM Part 2

§ Addressing Modes (review)
§ Batch load
§ Stack

§ Memory Mapped Input Output (MMIO)

6

Embedded	Real-Time	Systems

LDR and STR
§ LDR and STR instructions can load and store data on a boundary alignment

that is the same as the datatype size being loaded or stored

§ LDR can only load 32-bit words on a memory address that is a multiple of 4
bytes – 0, 4, 8, and so on

§ LDR r0, [r1]

§ Loads register r0 with the contents of the memory address pointed to by
register r1

§ STR r0, [r1]

§ Stores the contents of register r0 to the memory address pointed to by
register r1

§ Register r1 is called the base address register

7

Embedded	Real-Time	Systems

LDR/STR Example

8

§ The memory location to be accessed is held in a base register

STR r0, [r1] ; Store contents of r0 to location pointed
; to by contents of r1.

LDR r2, [r1] ; Load r2 with contents of memory location
; pointed to by contents of r1

Embedded	Real-Time	Systems

Addressing Modes (1-4)
§ ARM provides three addressing modes

§ Preindex with writeback
§ Preindex
§ Postindex

§ Preindex mode useful for accessing a single element in a data
structure

§ Postindex and preindex with writeback useful for traversing an array

9

Embedded	Real-Time	Systems

Addressing Modes (2-4)
§ Preindex

§ Same as preindex with writeback, but does not update the base register
§ Example: LDR r0, [r1, #4]

§ Preindex with writeback
§ Calculates address from a base register plus address offset
§ Updates the address in the base register with the new address
§ The updated base register value is the address used to access memory
§ Example: LDR r0, [r1, #4]!

§ Postindex
§ Only updates the base register after the address is used
§ Example: LDR r0, [r1], #4

10

Embedded	Real-Time	Systems

Addressing Modes (3-4)

11

Preindexing with	writeback

LDR r0, [r1, #4]!

POST r0 =
r1 =

PRE			 r0 = 0x00000000
r1 = 0x00009000
mem32[0x00009000] = 0x01010101
mem32[0x00009004] = 0x02020202

Preindexing

LDR r0, [r1, #4]

POST		r0 =
r1 =

Postindexing

LDR r0, [r1], #4

POST r0 =
r1 =

0x02020202
0x00009004

0x02020202
0x00009000

0x01010101
0x00009004

Embedded	Real-Time	Systems

Addressing Modes (4-4)

12

§ Address <address> accessed by LDR/STR is specified by
§ A base register plus an offset

§ Offset takes one of the three formats
1. Immediate: offset is a number that can be added to or subtracted from the

base register
Example: LDR r0,[r1, #8]; r0 b mem[r1+8]

LDR r0,[r1, #-8]; r0 b mem[r1-8]

2. Register: offset is a general-purpose register that can be added to or
subtracted from the base register
Example: LDR r0,[r1, r2]; r0 b mem[r1+r2]

LDR r0,[r1, -r2]; r0 b mem[r1-r2]

3. Scaled Register: offset is a general-purpose register shifted by an immediate
value and then added to or subtracted from the base register

Example: LDR r0,[r1,r2, LSL #2]; r0 b mem[r1+4*r2]

Embedded	Real-Time	Systems

Multiple-Register Transfer
§ Load-store-multiple instructions can transfer multiple registers between

memory and the processor in a single instruction
§ Advantages

§ More efficient than single-register transfers for moving blocks of data around
memory

§ More efficient for saving and restoring context and stacks
§ Disadvantages

§ ARM does not interrupt instructions when executing a load-store multiple
instructions can increase interrupt latency

§ Compilers can limit interrupt latency by providing a switch to control the
max number of registers that can be transferred on a load-store-multiple

LDM<cond><addrMode> Rn{!}, <registerList>{^}
STM<cond><addrMode> Rn{!}, <registerList>{^}

Embedded	Real-Time	Systems

More on Load-Store-Multiple
§ Transfer occurs from a base-address register Rn pointing into memory
§ Transferred registers can be either

§ Any subset of the current bank of registers (default)
§ Any subset of the user mode bank of registers when in a privileged mode

(postfix instruction with a ‘^’)
§ Processor not in user mode or system mode
§ Writeback is not possible, i.e., ! cannot be supported at the same time
§ If pc is in the list of registers, additionally copy spsr to cpsr

§ Register Rn can be optionally updated following the transfer
§ If register Rn is followed by the ! character

§ Registers can be individually listed or lumped together as a range
§ Use a comma with “{“ and “}” parentheses to list individual registers
§ Use a “-” to indicate a range of registers
§ Good practice to list the registers in the order of increasing register number

(since this is the usual order of memory transfer)

Embedded	Real-Time	SystemsAddressing Modes for
Load-Store-Multiple
§ Suppose that N is the number of registers in the list of registers

§ xxxIA (increment after)
§ Start reading at address Rn; ending address is Rn + 4N – 4
§ Rn! equals Rn + 4N

§ xxxIB (increment before)
§ Start reading at address Rn+4; ending address is Rn + 4N
§ Rn! equals Rn + 4N

§ xxxDA (decrement after)
§ Start reading at address Rn – 4N + 4; ending address is Rn
§ Rn! equals Rn - 4N

§ xxxDB (decrement before)
§ Start reading at address Rn – 4N; ending address is Rn - 4
§ Rn! equals Rn - 4N

§ ARM convention: DB and DA are like loading the register list backwards
from sequentially descending memory addresses

Embedded	Real-Time	Systems

Things to Remember
§ Any register can be used as the base register
§ Any register can be in the register list
§ Order of registers in the list does not matter
§ The lowest register always uses the lowest memory address regardless of

the order in which registers are listed in the instruction
§ LDM and STM instructions only transfer words

§ Unlike LDR/STR instructions, they don’t transfer bytes or half-words
§ Can specify range instead of individual registers

§ Example: LDMIA r10!, {r12, r2-r7}
§ If the base register is updated (using !) in the instruction, then it cannot be

a part of the register set
§ Example: LDMIA r10!, {r0, r1, r4, r10} is not allowed

Embedded	Real-Time	Systems

Examples
PRE			r0 = 0x00080010

r1 = 0x00000000
r2 = 0x00000000
r3 = 0x00000000
mem32[0x8001c] = 0x04
mem32[0x80018] = 0x03
mem32[0x80014] = 0x02
mem32[0x80010] = 0x01

0x00080020 0x05

0x0008001c 0x04

0x00080018 0x03

0x00080014 0x02

0x00080010 0x01

0x0008000c 0x00

r0
(original)

LDMIA r0!, {r1-r3}

POSTr0 =
r1 =
r2 =
r3 =

LDMIB r0!, {r1-r3}

POSTr0 =
r1 =
r2 =
r3 =

0x0008001c
0x01
0x02
0x03

0x0008001c
0x02
0x03
0x04

Embedded	Real-Time	Systems

Example 1: Saving & Restoring Registers
§ Here’s what we want to accomplish

§ Save the contents of registers r1, r2 and r3 to memory
§ Mess with the contents of registers r1, r2 and r3
§ Restore the original contents of r1, r2 and r3 from memory & restore r0

PRE			r0 = 0x00009000
r1 = 0x09
r2 = 0x08
r3 = 0x07

;	store	contents	to	memory
STMIB r0!, {r1-r3}
;	mess	with	registers	r1,	r2,	r3
MOV r1, #1
MOV r2, #2
MOV r3, #3
;	restore	original	r1,	r2,	r3
LDMDA r0!, {r1-r3}

0x0000900c

0x00009008

0x00009004

0x00009000
r0

(original)

ARM convention: Highest memory
location maps to highest numbered
register

0x07
0x08
0x09

Embedded	Real-Time	Systems

Example 1: Block Copying
§ Here’s what we want to accomplish

§ Copy blocks of 32 bytes from a source address to a destination address
§ r9 points to the start of the source data
§ r10 points to the start of the destination data
§ r11 points to the end of the source data

loop
;	load	32	bytes	from	source	address	and	update	r9 pointer
LDMIA r9!, {r0-r7}
;	store	32	bytes	to	destination	address	and	update	r10 pointer
STMIA r10!, {r0-r7}
;	check	if	we	are	done	with	the	entire	block	copy
CMP r9, r11
;	continue	until	done
BNE loop

Embedded	Real-Time	Systems

Stack Operations
§ ARM uses load-store-multiple instructions to accomplish stack operations
§ Pop (removing data from a stack) uses load-multiple
§ Push (placing data on a stack) uses store-multiple
§ Stacks are ascending or descending

§ Ascending (A): Grow towards higher memory addresses
§ Descending (D): Grow towards lower memory addresses

§ Stacks can be full or empty
§ Full (F): Stack pointer sp points to the last used or full location
§ Empty (E): Stack pointer sp points to the first unused or empty location

§ Four possible variants
§ Full ascending (FA) – LDMFA & STMFA
§ Full descending (FD) – LDMFD & STMFD
§ Empty ascending (EA) – LDMEA & STMEA
§ Empty descending (ED) – LDMED & STMED

Embedded	Real-Time	Systems

Stacks on the ARM
§ ARM has an ARM-Thumb Procedure Call Standard

(ATPCS)
§ Specifies how routines are called and how registers are

allocated
§ Stacks according to ATPCS

§ Full descending
§ What does this mean for you?

§ Use STMFD to store registers on stack at procedure entry
§ Use LDMFD to restore registers from stack at procedure

exit
§ What do these handy aliases actually represent?

§ STMFD = STMDB (store-multiple-decrement-before)
§ LDMFD = LDMIA (load-multiple-increment-after)

Embedded	Real-Time	Systems

Example
PRE			r1 = 0x00000002

r4 = 0x00000003
sp = 0x00080014

STMFD sp!, {r1, r4}

0x00080018 0x05

0x00080014 0x04

0x00080010 Empty
0x0008000c Empty

sp
(original)

0x00080018 0x05

0x00080014 0x04

0x00080010 0x03
0x0008000c 0x02sp

(final)

Embedded	Real-Time	Systems

SW Stack Checking
§ Three stack attributes to be preserved (/swst assembler option)
§ Stack base

§ Starting address of the stack in memory
§ If sp goes past the stack base, stack underflow error occurs

§ Stack pointer (sp)
§ Initially points to the stack base
§ As data is inserted when a program executes, sp descends memory and points

to top of the stack
§ Stack limit (sl)

§ If sp passes the stack limit, a stack overflow error occurs
§ ATPCS: r10 is defined as sl

§ If sp is less than r10 after items are pushed on the stack, stack overflow
occurs

Embedded	Real-Time	Systems

Call Chain

24

R13	– Stack	Pointer	(SP)
R14	– Link	Register	(LR)
R15	– Program	Counter	(PC)

Embedded	Real-Time	Systems

Instruction Support for Functions
main()
{

...
sum(a,b); // a,b:r4,r5
...

}

int sum(int x, int y)
{

return x + y;
}

address
1000 mov r0, r4 @ x = a
1004 mov r1, r5 @ y = b
1008 bl sum @ lr = 1012 branch to sum
1012 ...
2000 sum: ADD r0, r0, r1
2004 BX lr @ MOV pc, lr i.e., return

Note: returns to address 1012

C

A
R
M

Embedded	Real-Time	Systems

Register Saving Conventions
§ When procedure yoo calls who:

§ yoo is the caller
§ who is the callee

§ Can Register be used for temporary storage?
§ Conventions (ATPCS is part of ABI)

§ Application Binary Interface (ABI)
§ “Caller	Save”

§ Caller saves temporary values in its frame before the call
§ R0-R3

§ “Callee Save”
§ Callee saves temporary values in its frame before using
§ R4-R11 (sometimes R12)

Embedded	Real-Time	Systems

Register Usage

r8
r9/sb
r10/sl
r11

r12

r13/sp
r14/lr
r15/pc

r0
r1
r2
r3

r4
r5
r6
r7Register variables

Must be preserved

Arguments into function
Result(s) from function
otherwise corruptible
(Additional parameters
passed on stack)

Scratch register
(corruptible)

Stack Pointer
Link Register

Program Counter

Register

- Stack base
- Stack limit if software stack checking selected

- R14 can be used as a temporary once value stacked
- SP should always be 8-byte (2 word) aligned

Embedded	Real-Time	Systems

Course Hardware

28

Raspberry	Pi	2
BCM2836	SoC
Broadcom	900	MHz	quad-core	ARMCortex-A7
Cores:	4
L1	cache:	32	KB	instruction,	32	KB	data	*
L2	cache:	512	KB	*
RAM:		1	GB	RAM	(off	chip)
SDHC	slot	for	Flash
Broadcom	VideoCore IV
Released	Feb	2015

*	Estimate	based	on	sleuthing…

AND	lots	of	I/O	devices…

Embedded	Real-Time	Systems

Rpi Boot Process
§ 3 bootloaders
§ First stage (on-chip ROM):

§ ARM in RESET mode
§ Has code to load FAT32 file system on SD card and loads

bootcode.bin into memory to be used by GPU

§ Second stage (bootcode.bin):
§ Enables on-chip RAM
§ Loads start.elf from SD card into memory for GPU

§ Third stage (start.elf):
§ Contains GPU firmware and splits up the 1 GB of RAM between GPU

and ARM CPUs (more about this in lab1)
§ Then looks on SD card for kernel.img and loads it to 0x8000 and

sets *one* ARM CPU pc=0x8000
§ kernel.img -> Enables JTAG hardware

29

Embedded	Real-Time	SystemsInterfacing Peripheral
Devices to the Processor
§ So far we have looked at the ARM instruction set, programmer’s model
§ Up next: How do we interface peripheral devices to the processor?
§ We will look at

§ How do we set up (configure) peripheral devices?
§ How do we check the status of the devices?
§ How do we communicate with peripheral devices?

Embedded	Real-Time	Systems

Software Addressing of I/O Devices
§ Two ways of addressing I/O devices from the CPU

§ Memorymapped I/O
§ Devices are mapped in memory address space, e.g., the 7-segment LED
§ Standard load and store instruction can manipulate devices

§ Port-mapped I/O
§ Devices are not kept in memory address space
§ Special processor instructions request data from devices

§ Example
IN REG, PORT

OUT REG, PORT

§ Which one is better?
§ Memorymapped I/O uses the same load/store paradigm, but costs some of the

address space
§ Full address space is available for port-mapped I/O, but requires extra

instructions and control signals from the CPU

Embedded	Real-Time	Systems

Example
§ Device manufacturer will typically specify the registers that will be used to

set up and control the device
§ The hardware designers will specify the address of these devices on your

system
§ You will write code to set up the devices, use the devices

Embedded	Real-Time	Systems

Example
§ Example: Suppose your hardware board has a 7-segment LED display
§ Assume that the device manufacturer specifies that there is a register that can be

written to display a character on the LED
§ The device manufacturer will also provide a table that determines the contents

of the register for each character to be displayed)
§ The hardware designer will specify the address where this register is mapped

(assume that you are given that the device is mapped at 0x20200000
§ If you wanted to display a character “P” on the LED, the code you will

write will look like
LDR R0,=0x20200000
MOV R1,#0x0C

STRB R1,[R0]

// LED character map
#define LEDcharP 0x0c
#define LEDcharH 0x09
#define LEDcharA 0x08
…

Embedded	Real-Time	Systems

Writing Code to Access the Devices
§ Portability issues – hard-coding the address may pose problems in moving

to a new board where the address of the register is different
LDR R0,=0x20200000

MOV R1,#0x0C

STRB R1,[R0]

§ Should use EQU assembler directive: Equates a symbolic name (e.g.,
BASE) to a numeric value
BASE EQU 0x20200000

LDR R0, =BASE

§ Can also access devices using C programs
§ C pointers can be used to write to a specific memory location
unsigned char *ptr;

ptr = (unsigned char *) 0x20200000;

*ptr = (unsigned char) 0x0C;

Embedded	Real-Time	Systems

I/O Register Basics
§ I/O Registers are NOT like normal memory

§ Device events can change their values (e.g., status registers)
§ Reading a register can change its value (e.g., error condition reset)

§ For example, can't expect to get same value if read twice
§ Some are readonly (e.g., receive registers)
§ Some are writeonly (e.g., transmit registers)
§ Sometimes multiple I/O registers are mapped to same address

§ Selection of one based on other info (e.g., read vs. write or extra control
bits)

§ Cache must be disabled for memorymapped addresses – why?
§ When polling I/O registers, should tell compiler that value can change on

its own and therefore should not be stored in a register
§ volatile int *ptr; (or int volatile *ptr;)

Embedded	Real-Time	Systems

Making the case for volatile
§ Have you experienced any of the following in your C/C++ embedded

code?
§ Code that works fine-until you turn optimization on
§ Code that works fine-as long as interrupts are disabled
§ Flaky hardware drivers
§ Tasks that work fine in isolation-yet crash when another task is enabled

§ volatile is a qualifier that is applied to a variable when it is declared
§ It tells the compiler that the value of the variable may change at any time---

most importantly, even with no action being taken by the code that the
compiler finds nearby

Embedded	Real-Time	Systems

Syntax of volatile
§ volatile variable

volatile int foo;
int volatile foo;

§ pointer to a volatile variable
volatile int *foo;
int volatile *foo;

§ volatile pointer to a non-volatile variable (very rare)
int * volatile foo;

§ volatile pointer to a volatile variable (if you’re crazy)
int volatile * volatile foo;

§ If you apply volatile to a struct or union, the entire contents of the
struct/union are volatile
§ If you don't want this behavior, you can apply the volatile qualifier to the

individual members of the struct/union.

Embedded	Real-Time	Systems

The Use of volatile (1)
§ A variable should be declared volatile if its value could change

unexpectedly
§ Memory-mapped I/O registers
§ Global variables that can be modified by an interrupt service

routine
§ Global variables within multi-threaded applications

§ Example: Let’s poll an 8-bit I/O status register at 0x1234 until it is
non-zero

unsigned int *ptr = (unsigned int *) 0x1234;
// wait for I/O register to become non-zero
while (*ptr == 0);
// do something else

What’s wrong with this code? How would you fix it?

Embedded	Real-Time	Systems

The Use of volatile (2)
§ Example: Write an interrupt-service routine for a serial-port to test

each character to see if it represents an EOL character. If it is, we
will set a flag to be TRUE.

int eol_rcvd = FALSE;
void main() {  ...  while (!eol_rcvd)  {  // Wait  }  ... }

interrupt void rx_isr(void) {  ...  if (EOL == rx_char)  {  eol_rcvd = TRUE;  }  ... }How	might	an	optimizer	handle
this	code?	How	would	you	fix	it?

Embedded	Real-Time	Systems

Thoughts on volatile
§ What does the keyword volatile accomplish?

§ Tells the compiler not to perform certain optimizations
§ Tells the compiler not to use the cached version of the variable
§ Indicates that that variable can change asynchronously

§ Some compilers allow you to declare everything as volatile
§ Don’t! It’s a substitute for good thinking
§ Can lead to less efficient code

§ Don’t blame the optimizer and don’t turn it off

§ If you are given a piece of code whose behavior is unpredictable
§ Look for declarations of volatile variables
§ Look for where you should declare a variable as volatile

