
Embedded	Real-Time	Systems

18-349: Introduction to Embedded
Real-Time Systems

Anthony Rowe
Electrical and Computer Engineering
Carnegie Mellon University

Lecture	7:	Profiling	and	Optimization

Embedded	Real-Time	Systems

Lecture Overview

§ System Profiling
§ Speed
§ Size
§ Power

§ ARM Optimization

2

Embedded	Real-Time	Systems

System Profiling

"If you can not measure it, you can not improve it.”
– Lord Kelvin

3

What	can	we	improve?

Embedded	Real-Time	Systems

System Profiling
§ Algorithm Efficiency

§ Big “O” notation for limit of functions

§ Code Speed
§ Measure execution time

§ Code Size
§ Number of bytes

§ Memory Consumed

§ Power Consumed

4

Embedded	Real-Time	Systems

GPIO Timing
§ GPIO are often the lowest latency I/O

5

Embedded	Real-Time	Systems

Energy Profile

6

~
O-scope

RPi

Embedded	Real-Time	Systems

Deeper Profiling
§ Use timers to benchmark internal code segments

§ Get a Linux Runtime Version of SOME of your code
§ Port relevant algorithmic components to an existing OS on a less-

constrained environment

§ Now you can use existing tools
§ Gprof
§ Valgrind

7

Embedded	Real-Time	Systems

Gprof
§ Provides timing information for function call tree

§ Built into GNU Binutils

§ Instruments code at the start of function calls
§ Inserts mcount function

§ Sampling probes PC given OS interrupt calls
§ Requires an OS or at least profile interrupts

§ More information:
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf

8

Embedded	Real-Time	Systems

Valgrind
§ Programming tool(s) for memory debugging, memory leak detection

and profiling

§ Most common tool is Memcheck
§ Use of uninitialized memory
§ Read/writing freed memory
§ Read/write passed array bound or malloc
§ Memory Leaks

§ Many other tools
§ Massif (heap profiler)
§ Helgrind (checks race conditions in threads)
§ Cachegrind (cache profiler)
§ Callgrind (call graph analyser)
§ Exp-sgcheck (experimental stack and global memory tool)

9

Embedded	Real-Time	Systems

Optimization Overview
§ Code Optimization Techniques

§ Processor independent compiler optimizations
§ Common sub-expression elimination
§ Dead-code elimination
§ Induction variables
§ In-lining of functions
§ Loop unrolling

§ ARM specific optimization
§ Count-down loops
§ Register spilling
§ Efficient use of global variables

§ Space Optimization

Embedded	Real-Time	Systems

Code Optimization
§ Embedded systems usually contain a few key functions that determine the

system’s performance

§ By optimizing these functions, you can reduce the number of clock cycles
required by a program, and reduce program’s power consumption

§ Several ways to optimize programs
§ Choose efficient algorithms and data structures
§ Write code that can be optimized by a compiler
§ Convert C code to assembly code

§ Code optimization can also involve optimizing the amount of memory used
§ Memory optimization techniques often (but not always) conflict with clock-cycle

optimization techniques

Embedded	Real-Time	Systems

Improving Program Performance

§ Compiler writers try to apply several standard optimizations
§ Do not always succeed
§ Have to ensure that the program will produce the same output for all cases

§ Optimizations based on specific architecture/implementation characteristics
can be very helpful

§ How can one help?
§ Reorganize code to help compiler find opportunities for improvement

Embedded	Real-Time	Systems

Processor-Independent Optimizations (1)
§ Common Sub-expression Elimination

§ Formally, “An occurrence of an expression E is called a common sub-
expression if E was previously computed, and the values of variables in E have
not changed since the previous computation.”

§ You can avoid re-computing the expression if we can use the previously
computed one.

§ Benefit: less code to be executed

b:
t6 = 4 * i
x = a[t6]
t8 = 4 * j
t9 = a[t8]
a[t6] = t9
a[t8] = x
goto b

b:
t6 = 4 * i
x = a[t6]
t7 = 4 * i
t8 = 4 * j
t9 = a[t8]
a[t7] = t9
t10 = 4 * j
a[t10] = x
goto b

BEFORE AFTER

Embedded	Real-Time	Systems

Processor Independent Optimizations (2)
§ Dead-Code Elimination

§ If code is definitely not going to be executed during any run of a program, then
it is called dead-code and can be removed

§ Example:
debug = 0;

...

if (debug){

print

}

§ You can help by using #ifdefs to tell the compiler about dead-code
§ It is often difficult for the compiler to identify dead-code itself

Embedded	Real-Time	Systems

§ Induction Variables and Strength Reduction
§ A variable X is called an induction variable of a loop L if every time the variable X

changes value, it is incremented or decremented by some constant
§ When there are 2 or more induction variables in a loop, it may be possible to get rid of

all but one
§ It is also frequently possible to perform strength reduction on induction variables

§ The strength of an instruction corresponds to its execution cost
§ Benefit: Fewer and less expensive operations

j = 0
label_XXX

j = j + 1
t4 = 11 * j
t5 = a[t4]
if (t5 > v) goto label_XXX

Processor Independent Optimizations (3)

t4 = 0
label_XXX

t4 += 11
t5 = a[t4]
if (t5 > v) goto label_XXX

BEFORE AFTER

Embedded	Real-Time	Systems

Processor-Independent Optimizations (4)
§ Loop Unrolling

§ Doing multiple iterations of work in each iteration is called “loop unrolling”
§ Benefit: reduction in looping overheads and opportunity for more code opts.
§ Danger: increased code size and nonintegral loop div.
§ Appropriate when loops are small

int checksum(int *data, int N)
{

int i, sum=0;
for(i=0;i<N;i++)
{

sum += *data++;
}
return sum;

}

int checksum(int *data, int N)
{

int i, sum=0;
for(i=0;i<N;i+=4)
{

sum += *data++;
sum += *data++;
sum += *data++;
sum += *data++;

}
return sum;

}BEFORE

AFTER

Embedded	Real-Time	Systems

Loop Unrolling
0x00: MOV r3,#0 ; sum =0
0x04: MOV r2,#0 ; i= 0
0x08: CMP r2,r1 ; (i < N) ?
0x0c: BGE 0x20 ; go to 0x20 if i >= N
0x10: LDR r12,[r0],#4 ; r12 <- data++
0x14: ADD r3,r12,r3 ; sum = sum + r12
0x18: ADD r2,r2,#1 ; i=i+1
0x1c: B 0x8 ; jmp to 0x08
0x20: MOV r0,r3 ; sum = r3
0x24: MOV pc,r14 ; return

0x00: MOV r3,#0 ; sum = 0
0x04: MOV r2,#0 ; i = 0
0x08: B 0x30 ; jmp to 0x30
0x0c: LDR r12,[r0],#4 ; r12 <- data++
0x10: ADD r3,r12,r3 ; sum = sum + r12
0x14: LDR r12,[r0],#4 ; r12 <- data++
0x18: ADD r3,r12,r3 ; sum = sum + r12
0x1c: LDR r12,[r0],#4 ; r12 <- data++
0x20: ADD r3,r12,r3 ; sum = sum + r12
0x24: LDR r12,[r0],#4 ; r12 <- data++
0x28: ADD r3,r12,r3 ; sum = sum + r12
0x2c: ADD r2,r2,#4 ; i = i + 4
0x30: CMP r2,r1 ; (i < N) ?
0x34: BLT 0xc ; go to 0x0c if i < N
0x38: MOV r0,r3 ; r0 <- sum
0x3c: MOV pc,r14 ; return

loop overhead
computed N times

Original loop

After unrolling
the loop 4 times

loop overhead
computed N/4 times

BEFORE

AFTER

Embedded	Real-Time	Systems

Processor-Independent Compiler
Optimizations (5)

void t(int x, int y)
{

int a1=max(x,y);
int a2=max(x+1,y);

return max(a1+1,a2);
}
__inline int max(int a, int b)
{

int x;
x=(a>b ? a:b);
return x;

}

§ In-lining of functions
§ Replacing a call to a function with the function's code is called “in-lining”
§ Benefit: reduction in procedure call overheads and opportunity for additional code

optimizations
§ Danger: increased code size (possibly)
§ Appropriate when small and/or called

from a small number of sites

Embedded	Real-Time	Systems

Without Function Inlining
max
$a
0x00: CMP r0,r1; (x > y) ?
0x04: BGT 0x0c; return if (x > y)
0x08: MOV r0,r1; else r0 <- y
0x0c: MOV pc,r14 return
t
0x10: STMFD r13!,{r4,r14}; save registers
0x14: MOV r2,r0; r2 <- x
0x18: MOV r3,r1; r3 <- y
0x1c: MOV r1,r3; r1 <- y
0x20: MOV r0,r2; r0 <- x
0x24: BL max ; r0 <- max(x,y)
0x28: MOV r4,r0; r4 <- a1
0x2c: MOV r1,r3; r1 <- y
0x30: ADD r0,r2,#1; r0 <- x+1
0x34: BL max ; r0 <- max(x+1,y)
0x38: MOV r1,r0 ; r1 <- a2
0x3c: ADD r0,r4,#1 ; r0 <- a1+1
0x40: LDMFD r13!,{r4,r14} ; restore
0x44: B max ;

void t(int x, int y)
{

int a1=max(x,y);
int a2=max(x+1,y);

return max(a1+1,a2);
}
int max(int a, int b)
{

int x;
x=(a>b ? a:b);
return x;

}

Embedded	Real-Time	Systems

With Function Inlining
0x00: CMP r0,r1 ; (x<= y) ?
0x04: BLE 0x10 ; jmp to 0x10 if true
0x08: MOV r2,r0 ; a1 <- x
0x0c: B 0x14 ; jmp to 0x14
0x10: MOV r2,r1 ; a1 <- y if x <= y
0x14: ADD r0,r0,#1; generate r0=x+1
0x18: CMP r0,r1 ; (x+1 > y) ?
0x1c: BGT 0x24 ;jmp to 0x24 if true
0x20: MOV r0,r1 ; r0 <- y
0x24: ADD r1,r2,#1 ; r1 <- a1+1
0x28: CMP r1,r0 ; (a1+1 <= a2) ?
0x2c: BLE 0x34 ; jmp to 0x34 if true
0x30: MOV r0,r1 ; else r0 <- a1+1
0x34: MOV pc,r14

void t(int x, int y)
{

int a1=max(x,y);
int a2=max(x+1,y);

return max(a1+1,a2);
}
__inline int max(int a, int b)
{

int x;
x=(a>b ? a:b);
return x;

}

Embedded	Real-Time	Systems

0x0000000c: LDR r3,[r2],#4
0x00000010: ADD r0,r3,r0
0x00000014: SUB r1,r1,#1
0x00000018: CMP r1,#0
0x0000001c: BGE 0xc

Negative Instruction-Cache Effects

int checksum(int *data, int N)
{

int i;
for(i=N;i>=0;i--)
{

;
}
return sum;

}

sum += *data++

0x0000001C

instruction cache

0x0000000C

0x00000010

0x00000014

0x00000018

• Negative	instruction-cache	effects
- Loop	unrolling	and	function	in-lining	can	cause	performance	degradation	in	systems	
with	caches

Before unrolling the loop

Embedded	Real-Time	Systems

0x00000008: LDR r3,[r0],#4
0x0000000c: ADD r2,r3,r2
0x00000010: LDR r3,[r0],#4
0x00000014: ADD r2,r3,r2
0x00000018: LDR r3,[r0],#4
0x0000001c: ADD r2,r3,r2
0x00000020: LDR r3,[r0],#4
0x00000024: ADD r2,r3,r2
0x00000028: SUB r1,r1,#4
0x0000002c: CMP r1,#0
0x00000030: BGE 0x8

Negative Instruction-Cache Effects (contd)

int checksum(int *data, int N)
{

int i;
for(i=N;i>=0;i-=4)
{

}

return sum;
}

sum += *data++;
sum += *data++;
sum += *data++;
sum += *data++;

instruction cache

After unrolling the loop

Embedded	Real-Time	Systems

ARM-Specific Code-Optimization
Techniques
§ Often, it is important to understand the architecture's implementation in

order to effectively optimize code
§ One example of this is the ARM barrel shifter

§ Can convert Y * Constant into series of adds and shifts
§ Y * 9 = Y * 8 + Y * 1
§ Assume R1 holds Y and R2 will hold the result

§ ADD R2, R1, R1, LSL #3 ; LSL #3 is same as * by 8

§ Use of conditional execution of instructions can reduce the code size as
well as reduce the number of execution cycles

Embedded	Real-Time	Systems

Writing Efficient C for ARM Processors (1)
§ Use loops that count down to zero, instead of counting upwards
§ Example

§ Counting upwards needs an ADD instruction, a CMP to check if index less
than 64, and a conditional branch if index is less than 64
§ Counting downwards needs a SUBS instruction (which sets the CPSR flags),

and a conditional branch instruction BGE to handle the end of the looping

int checksum(int *data)
{

unsigned i;
int sum=0;

for(i=0;i<64;i++)
sum += *data++;

return sum;
}

int checksum (int *data)
{

unsigned i;
int sum=0;

for(i=63;i >= 0;i--)
sum += *data++;

return sum;
}

Count-up loop Count-down loop

Embedded	Real-Time	Systems

Count-Down Loops (Example)

int checksum_v1(int *data)
{

unsigned i;
int sum=0;

for(i=0;i<64;i++)
sum += *data++;

return sum;
}

int checksum_v2(int *data)
{

unsigned i;
int sum=0;

for(i=63;i >= 0;i--)
sum += *data++;

return sum;
}

MOV r2, r0; r2=data
MOV r0, #0; sum=0
MOV r1, #0; i=0

L1 LDR r3,[r2],#4; r3=*data++
ADD r1, r1, #1; i=i+1
CMP r1, 0x40; cmp r1, 64
ADD r0, r3, r0; sum +=r3
BCC L1; if i < 64, goto L1
MOV pc, lr; return sum

MOV r2, r0; r2=data
MOV r0, #0; sum=0
MOV r1, #0x3f; i=63

L1 LDR r3,[r2],#4; r3=*data++
ADD r0, r3, r0; sum +=r3
SUBS r1, r1, #1; i--, set flags
BGE L1; if i >= 0, goto L1
MOV pc, lr; return sum

Embedded	Real-Time	Systems

Writing Efficient C for ARM Processors (2)
§ These are things you can keep in mind, rather than expecting the compiler

to do all the work for you
§ ARM processors uses 32-bit data types in their data processing instructions

§ If you use types like char, the compiler has to add extra code to check/ensure
that the value does not exceed 255

§ Example
void t3(void)
{

char c;
int x=0;
for(c=0;c<63;c++)

x++;
}

void t4(void)
{

int c;
int x=0;
for(c=0;c<63;c++)

x++;
}

MOV r0,#0; x=0
MOV r1,#0; c=0

L1 CMP r1,#0x3f; cmp c with 63
BCS L2; if c>= 63, goto L2
ADD r0,r0,#1; x++;
ADD r1,r1,#1; c++
AND r1,r1,#0xff; c=(char) r1
B L1; branch to L1

L2 MOV pc,r14

Embedded	Real-Time	Systems

Writing Efficient C for ARM Processors (3)

§ ARM does not have a divide instruction
§ Divisions are implemented by calling software routines in C library
§ Can take between 20-100 cycles

§ In many cases, it might be possible to avoid divisions and/or remainder
operation
Example: Circular Buffers (assuming increment <= size)

start=(start+increment) % size

start+= increment;
if (start >= size)

start -= size;

start

Embedded	Real-Time	Systems

Writing Efficient C for ARM Processors (4)

§ Efficiently using global variables: Global variables are stored in memory,
load and store instructions are typically used to access the variable when
they are used or modified
§ Register accesses are more efficient than memory accesses

§ In some cases a global variable is used frequently, it may be better to store
it in a local variable

§ Example

int f(void);
int g(void);
int errs;

void test_v1(void)
{

errs += f();
errs += g();

}

int f(void);
int g(void);
int errs;

void test_v2(void)
{

int local_errs=errs;
local_errs += f();
local_errs += g();
errs=local_errs;

}

Embedded	Real-Time	Systems

Efficient Use of Global Variables
test_v1
0x00: STMFD r13!,{r4,r14} ; save registers
0x04: BL f ; compute f()
0x08: LDR r4,0x84 ; r4 <- address of errs
0x0c: LDR r1,[r4,#0] ; r1 <- errs
0x10: ADD r0,r0,r1 ; r1 <- r1 + r0
0x14: STR r0,[r4,#0] ; store r1 at mem loc address of errs
0x18: BL g ; compute g()
0x1c: LDR r1,[r4,#0] ; r1 <- errs
0x20: ADD r0,r0,r1
0x24: STR r0,[r4,#0] ; store r0 in errs
0x28: LDMFD r13!,{r4,pc} ; exit from function

test_v2
0x00: STMFD r13!,{r3-r5,r14} ; save registers
0x04: LDR r5,0x84 ; r5 <- address of errs
0x08: LDR r4,[r5,#0] ; r4 = local_errs = errs
0x0c: BL f ; compute f()
0x10: ADD r4,r0,r4 ; r4 = r4 + f()
0x14: BL g ; compute g()
0x18: ADD r0,r0,r4 ; r0 = r0 + r4;
0x1c: STR r0,[r5,#0] ; store r0 at mem loc address of errs
0x20: LDMFD r13!,{r3-r5,pc} ; exit from function

Embedded	Real-Time	Systems

Writing Efficient C for ARM Processors (5)

§ Local variables are typically stored in registers
§ In some cases, local variables need to be stored in memory

§ Example – when the address of a local variable is taken
§ If a local variable is stored in memory, load and store are used to access the

variable
§ Example

int f(int *a);
int g(int b);

void test_v1(void)
{

int i=0;
f(&i);
i += g(i);
i += g(i);
/* lots of access to i */
return i;

}

int f(int *a);
int g(int b);

void test_v2(void)
{

int dummy=0, i;
f(&dummy);
i = dummy;
i += g(i);
i += g(i);
/* lots of access to i */
return i;

}

Embedded	Real-Time	Systems

Writing Efficient C for ARM Processors (6)

§ Avoid register spilling
§ When the number of local variables in use in a function exceeds the number of

registers available
§ Causes the compiler to place certain variables in memory

§ You should limit the number of live variables in a function
§ Subdividing large functions into multiple small functions may help (keep in

mind that there you increase the function call overhead)
§ Use the register keyword to tell the compiler which variables have to be

stored in registers in case of register spilling

Embedded	Real-Time	Systems

Optimizing Function Calls

§ Can the compiler optimize multiple calls to the same function?
§ Example: Will the compiler convert

§ Not always, the function square can have side-effects

§ If the function does not have any side-effects and is defined in the same file
as the test function, then the compiler can optimize two calls to square
into a single call to square

void test(int x)
return(square(x*x) + square(x*x));

void test(int x)
return(2*square(x*x));into ?

int square(int x)
{

counter++;/* counter is a global variable */
return(x*x);

}

Embedded	Real-Time	Systems

Writing Efficient C for ARM Processors (7)

§ Pure functions: Function whose output depends only upon the input
parameters (and not the value of any other global variables) and do not
have any side-effects

§ Can tell a compiler that a function is a pure function by using the keyword
__pure in the declaration of the function

§ This allows the compiler to optimize calls to pure functions regardless of
where the function is defined

§ Example:
__pure int square(int x);

int test(int x)
{

return (square(x*x) + square(x*x));
}

__pure int square(int x);

int test(int x)
{

return (2*square(x*x));
}

Embedded	Real-Time	Systems

Optimization for Code Size – Optimizing Structures

§ Which of the two structures would be better?

struct
{

char a;
int b;
char c;
short d;

}

struct
{

char a;
char c;
short d;
int b;

}

12 bytes 8 bytes

Embedded	Real-Time	Systems

More Space Optimization
§ Can use the __packed key word to instruct the compiler to remove all

padding

§ Packed structures are slow and inefficient to access
§ ARM Compiler emulates unaligned load and store by using several aligned

accesses and using several byte-by-byte operations to get the data
§ Use __packed only if space is more important than speed and you cannot

reduce padding by rearrangement

__packed struct
{

char a;
int b;
char c;
short d;

}

8 bytes

Embedded	Real-Time	Systems

Summary

36

§ Quick SWI / PC Detour

§ System Profiling
§ Speed
§ Size
§ Power

§ ARM Optimization

Embedded	Real-Time	Systems

Linking Outline

§ Linking
§ What happens during linking?
§ How library functions get resolved by the linker?
§ Different kinds of linking

§ Executable & Linkable Format
§ ELF header description
§ Description of the sections of an ELF file

§ Loading an executable file into memory

Embedded	Real-Time	Systems

Program Translation

main.c

Assembly

Object

Executable

Memory

Obj	Library

Source : D. Patterson,J. Hennessey Computer Organization & Design

square.c

Assembly

Object

Compiler

Assembler

Linker

Loader

Compiler

Assembler

Embedded	Real-Time	Systems

Linkers
• Compilers and assemblers generate re-locatable object files

– References to external symbols are not resolved
– Compilers generate object files in which code starts at address 0
– Cannot execute a compiler-produced object file

• Executable files are created from individual object files and libraries
through the linking process

• Linker performs two tasks
– Symbol resolution: Object files define and reference symbols, linker tries to

resolve each symbol reference with one symbol definition
– Relocation: Linker tries to relocate code and data from different object files so

that different sections start at different addresses and all the references are
updated

Embedded	Real-Time	Systems

00000000 <sum>:
0: add r0, r0, r1 ; sum=x+y
4: bx lr ; return

00000008 <main>:
8: push {r4, r5, lr} ;save registers
c: sub sp, sp, #4 ; sp <- sp- 0x4

10: mov r0, #5 ; 0x5 ; x=5;
14: mov r1, #10 ; 0xa ; y=10
18: bl 0 <sum> ; compute sum(x,y)
1c : ldr r5, [pc, #48] ; r5 <= &tmp (54)
20: str r0, [r5] ; tmp=r0=sum(x,y)
24: mov r0, #5 ; x=5;
28: bl 0 <square> ; compute square(5)
2c: mov r4, r0 ; r4=r0= 25;
30: mov r0, #10 ; 0xa ; r0=10;
34: bl 0 <square> ; compute square(10)
38: mov r1, r0 ; r1=100;
3c: mov r0, r4 ; r0=r4=25
40: bl 0 <sum> ; compute sum(25, 100)
44: str r0, [r5] ; tmp = r0 = 125;
48: add sp, sp, #4 ; sp <= sp + 4
4c: pop {r4, r5, lr} ; restore registers
50: bx lr ; jump back
54: .word 0x00000000

00000000 <counter>:
0: .word 0x00000003 ; address 0x00 of data

section contains 3

Example: Compiling main.c and square.c
int counter=3;
int tmp;
static int sum(int x,
int y);
extern int square(int
x);

int main()
{

int x=5, y=10;
int a, b;
tmp=sum(x,y);
a=square(x);
b=square(y);
tmp=sum(a,b);
return;

}

int sum(int x, int y)
{

int result;
result=x+y;
return result;

}

main.c extern int counter;
int square(int x)
{
int result;
if(counter >= 0)

result=x*x;
else

result=0;
counter--;
return result;

}

square.cmain.o

0: ldr r3, [pc, #32] ; 28
<square+0x28>

4: ldr r2, [r3]
8: cmp r2, #0 ; 0x0
c: movlt r0, #0 ; 0x0

10: mulge r3, r0, r0
14: movge r0, r3
18: sub r2, r2, #1 ; 0x1
1c: ldr r3, [pc, #4] ; 28

<square+0x28>
20: str r2, [r3]
24: bx lr
28: 00000000 .word

0x00000000
square.o

compiler

compiler

Embedded	Real-Time	Systems

00008338 <sum>:
8338: add r0, r0, r1
833c: bx lr

00008340 <main>:
8340: push {r4, r5, lr}
8344: sub sp, sp, #4 ; 0x4
8348: mov r0, #5 ; 0x5
834c: mov r1, #10 ; 0xa
8350: bl 8338 <sum>
8354: ldr r5, [pc, #48]; r5 <= 0x0001056c = &tmp
8358: str r0, [r5] ; *0x0001056c = tmp = 15
835c: mov r0, #5 ; 0x5
8360: bl 8390 <square> ;
8364: mov r4, r0
8368: mov r0, #10 ; 0xa
836c: bl 8390 <square>
8370: mov r1, r0
8374: mov r0, r4
8378: bl 8338 <sum>
837c: str r0, [r5] ; *0x0001056c = tmp = 125
8380: add sp, sp, #4 ;
8384: pop {r4, r5, lr}
8388: bx lr
838c: .word 0x0001056c

Example: After Linking main.o and square.o
00008390 <square>:

8390: ldr r3, [pc, #32] ; r3 = &counter (83b8)
8394 ldr r2, [r3] ; r2 = counter
8398 cmp r2, #0 ; 0x0 ; counter > 0 ?
839c: movlt r0, #0 ; 0x0 ; if(counter < 0) then

r0<=0x0
83a0: mulge r3, r0, r0 ; else r3 = r0*r0
83a4: movge r0, r3 ; else r0 = r3 =r0 * r0
83a8: sub r2, r2, #1 ; counter--
83ac: ldr r3, [pc, #4] ; r3 = 0x00010564 =

&counter (83b8)
83b0: str r2, [r3] ; counter = r2 = counter-1
83b4: bx lr ; return back
83b8: .word 0x00010564

00010564 <counter>:
10564: .word 0x00000003

.bss
0001056c <tmp>:

1056c: .word 0x00000000

linker adds the actual address of
symbol square

linker relocates the code to a different
memory location

Embedded	Real-Time	Systems

Library Functions
§ What happens when the source files use library functions like
printf, scanf, etc.?

§ Compiler produces a symbol (in the same way as the square
function in the previous example) in the object file

§ Linker
§ Attempts to resolve these references by matching them to definitions

found in other object files
§ If the symbol is not resolved, the linker searches for the symbol

definition in library files

§ What are library files?
§ Collection of object files that provide related functionality
§ Example: The standard C library libc.a is a collection of object files
printf.o, scanf.o, fprintf.o, fscanf.o…

Embedded	Real-Time	Systems

Library Functions

§ How does the linker know where to find the library?
§ User defined libraries can be specified as a command line argument
§ The environment variable LD_LIBRARY_PATH holds the path that is

searched to find the specific library

§ Linker does a search to see whether the symbol is defined in the specified
libraries
§ The order in which this search is performed is determined by the order

in which the libraries are specified
§ If the symbol is defined in more than one library, the first library in the

path is selected
§ Linker then extracts the specific .o file that defines the symbol in the library and

processes this .o file with all the other object files

§ If the symbol is not defined in any of the library, linker throws an error

Embedded	Real-Time	Systems

Kinds of Linking Models

§ Different kinds of linking models
§ Static: Set of object files, system libraries and library archives are

statically bound, references are resolved, and a self-contained
executable file is created
§ Problem: If multiple programs are running on the processor

simultaneously, and they require some common library module (say,
printf.o), multiple copies of this common module are included in the
executable file and loaded into memory (waste of memory!)

§ Dynamic: Set of object files, libraries, system shared resources and
other shared libraries are linked together to create an executable file
§ When this executable is loaded, other shared resources and dynamic

libraries must be made available in the system for the program to run
successfully

§ If multiple programs running on a processor need the same object module,
only one copy of the module needs to be loaded in the memory

Embedded	Real-Time	Systems

Dynamic Linking

§ Dynamically linked executable or shared object undergoes
final linking when
§ Loaded into memory by a program loader

§ An executable or shared object to be linked dynamically might
§ List one or more shared objects (shared libraries) with which it should

be linked

§ Other advantages of dynamic linking
§ Updating of libraries

§ The size on disk of an executable that uses dynamically linked
modules may be less than its size in memory (during run-time)
§ Why?

Embedded	Real-Time	Systems

Kinds of Object Files
§ Three main types of object files

§ Re-locatable file: Code and data suitable for linking with other object
files to create an executable or a shared object file

§ Executable file: Program suitable for execution
§ Shared object file (also called “Dynamically linked library”):

Special type of re-locatable object file that can be loaded into memory
and linked dynamically
§ First, the linker may process it with other re-locatable and shared object

files to create another object file
§ Second, the dynamic linker combines it with an executable file and other

shared objects to create a process image

§ Compilers and assemblers generate re-locatable object files
§ Linkers generate executable object files

Embedded	Real-Time	Systems

Executable and Linking Format (ELF)
§ Object files need to be in a specific format to facilitate linking and loading
§ Executable and Linkable Format (ELF) is the popular format of an object file
§ Supported by many vendors and tools

§ Diverse processors, multiple data encodings and multiple classes of machines
§ ELF specifies the layout of the object files and not the contents of code or data
§ ELF object files consist of
§ ELF Header

§ Beginning of ELF file
§ Holds a roadmap of file’s organization
§ How to interpret the file, independent of the processor

§ Program header table
§ Tells the system how to create a process image
§ Files used to build a process image (execute a program) must have a

program header table
§ Re-locatable files do not need one

§ Sections
§ Object file information for the linking view
§ Instructions, data, symbol table, relocation information, etc.

Embedded	Real-Time	Systems

Linking & Execution Views

Embedded	Real-Time	Systems

ELF Execution View

Embedded	Real-Time	Systems

ELF Header
§ All ELF files contain a header in the beginning of the file

§ Determines whether the file is an ELF file, whether it is in big/little endian
format, the target processor, offsets to the program header table and/or
section header table…

§ Format of the ELF header
#define EI_NIDENT 16
typedef struct {

unsigned char e_ident[EI_NIDENT]; // file info (object file or not)
Elf32_Half e_type; // type of file (relocatable, executable, etc.)
Elf32_Half e_machine; // target processor (Intel x86, ARM, SPARC etc.)
Elf32_Word e_version; / version # (to allow for future versions of ELF)
Elf32_Addr e_entry; // program entry point (0 if no entry point)
Elf32_Off e_phoff; // offset of program header (in bytes)
Elf32_Off e_shoff; // offset of section header table
Elf32_Word e_flags; // processor-specific flags
Elf32_Half e_ehsize; // ELF header’s size
Elf32_Half e_phentsize; // entry size in pgm header tbl
Elf32_Half e_phnum; // # of entries in pgm header
Elf32_Half e_shentsize; // entry size in sec header tbl
Elf32_Half e_shnum; // # of entries in sec header tbl
Elf32_Half e_shstrndx; // sec header tbl index of str tbl

} Elf32_Ehdr;

See Section 3.2 of ARM ELF Specification document

Embedded	Real-Time	Systems

ELF Sections

.data

.symtab

.rel.text

.rel.data

.debug

.text

.bss

ELF header

Sections

.strtab

Section header table

.line

.rodata

Relocatable files must have a section header table
Locations and size of sections are described by the section header table

Source: “Computer Systems: A Programmer’s
Perspective”, R. E. Bryant and D. O’Hallaron

Embedded	Real-Time	Systems

Description of Various Sections

§ .text: program instructions and literal data
§ .rodata: Read-only data such as the format strings in printf statements
§ .data: initialized global data
§ .bss: un-initialized global data (set to zero when program image is created)

§ This section does not occupy any space in the object file
§ .symtab: this section holds the symbol table information

§ All global variables and functions that are defined and referenced in the program
§ .rel.text: list of locations in the .text section that will need to be modified when linker

combines this object files with others
§ .rel.data: relocation information for any global variables that are referenced or defined in

a module
§ .debug: debugging information (present only if code is compiled to produce debug

information)
§ .line: mapping between line numbers in C program and machine code instructions (present

only if code is compiled to produce debug information)
§ .strtab: string table for symbols defined in .symtab and .debug sections

Embedded	Real-Time	Systems

Executable Object Files

.data

.symtab

.debug

0

.rodata

.bss

ELF header

Describes
object file
sections

.strtab

Section header table

.line

Segment header table

.text

.init

Maps file sections to
runtime memory

segments Read-only memory segment
(code segment)

Read/write memory segment
(data segment)

Symbol table and
debugging info are not
loaded into memory

Embedded	Real-Time	Systems

ELF Program Header
§ Executable ELF files must have a program header table

§ The program header table is used to load the program (called “creating program image”)

§ Each segment has its own entry in the program header table
§ e_phnum in ELF Header holds the number of program header entries

§ All program header entries have the same size (e_phentsize in ELF header)

§ Program header entry for each segment

typedef struct {
Elf32_Word p_type; //type of segment – loadable, dll,...

Elf32_Off p_offset; //offset in bytes from the start of file

Elf32_Addr p_vaddr; //virtual address in memory of segment

Elf32_Addr p_paddr; //physical address in memory of segment

Elf32_Word p_filesz; //number of bytes in the file of the segment

Elf32_Word p_memsz; //number of bytes in memory of the process
//image of the segment

Elf32_Word p_flags; //indicates whether segment is executable
Elf32_Word p_align; //alignment information

} Elf32_Phdr;

§ What happens if p_memsz > p_filesz?
§ The remaining bytes (p_memsz-p_filesz) are initialized with 0

Embedded	Real-Time	Systems

Useful Tools
§ You can use many command line tools to parse ELF files
§ ARM provides readelf command line utility that can display

information about an ELF file
§ You can disassemble ELF files, look at symbol table information, etc.

§ Example: readelf main.o
** ELF Header Information
File Name: main.c

Machine class: ELFCLASS32 (32-bit)
Data encoding: ELFDATA2MSB (Big endian)
Header version: EV_CURRENT (Current version)
File Type: ET_REL (Relocatable object) (1)
Machine: EM_ARM (ARM)
Header size: 52 bytes (0x34)
Program header entry size: 32 bytes (0x20)
Section header entry size: 40 bytes (0x28)
Program header entries: 0
Section header entries: 25
Program header offset: 0 (0x00000000)
Section header offset: 4512 (0x000011a0)

…and more

Embedded	Real-Time	Systems

Useful Tools (contd.)

§ Look at the symbol table information in main.o
§ Example: nm main.o

D (global, initialized, data) counter
T (global text) main
U (global undefined) square
t (local, static, text) sum
C (global, uninitialized) tmp

§ You can also use other switches to print information on each segment, section,
print relocation information …

