Schedulability with resource sharing

Priority inheritance protocol
Priority ceiling protocol

Stack resource policy

| ecture overview

- We have discussed the occurrence of unbounded priority inversion

« We know about blocking and blocking times

« Now: Evaluating schedulability in combination with protocols for avoiding
unbounded priority inversion

- Priority ceiling protocol to prevent deadlocks
- Stack-based resource policy
 Improves on other policies

« Extends to EDF

Blocking

 Tasks have synchronization constraints
- Use semaphores to protect critical sections

- Blocking can cause a higher priority task to wait for a lower priority task
to unlock a resource

- We always assumed that higher priority tasks can preempt lower
priority tasks

- To make rules consistent, we discussed the priority inheritance
approach

General Model and Assumptions

- Assumption: Each resource has one instance only (binary semaphores)

- Assumption: Resource requests are properly nested

- Assumption: We have perfect knowledge of all task resource

requirements

- Except for SRP, all protocols are designed for static-priority scheduling

dispatching

activation

— termination
< > Semaphore Queue

preemption

wait

Resource
1

v

Semaphore Queue

Resource
2

Semaphore Queue

Resource
M

Approach #1: Non-Preemptive Protocol (NPP)

- Whenever a task requests a resource, make it the highest priority task
for the duration of its critical section

- The good: Easy to Implement

- The bad: unnecessarily blocks higher priority tasks that do not request
resources

B normal execution

[1 critical section

™ ? h
k R

Non-Preemptive Protocol: Blocking time computation

- Atask T; can be blocked only by a lower priority task that has requested a
resource before T;'s arrival

- Key: Whenever a task is in a critical section, it cannot be preempted

« The lower priority task resumes its static priority as soon as it releases all
resources in the critical section

« As soon as the lower priority task releases the resource, the highest priority task
available will acquire the processor and it will not be blocked again

« Conclusion: Worst case blocking time is the duration of the longest critical
section of any lower priority task

Let §; x: duration of longest critical section of task j using resource Ry

Blocking time B; = max{§;: ; < m; J; uses resource R; }

Note: If no lower priority task uses any resources, then B; = 0;i.e,, max @ = 0
6

Approach #2: Highest Locker Priority (HLP)

- Problem with non-preemptive protocol: unnecessarily blocks higher priority

tasks that do not need resources

- SOLUTION: When a task requests resource R, elevate its priority to the priority
of the highest priority task that ever shares (uses) resource R

Dynamic priority 73(%)

Of T3

S

Scheduling decisions are
Based on dynamic priorities m; (t)

- 1, finishes

blocked

m

71

T A .

T {——

Highest Locker Priority: Blocking time computation

- When a task requests resource Ry, elevate its priority to the priority of the highest
priority task that ever shares resource R,

- Observation: Task T; can be blocked only by lower priority tasks that use a resource
that is ever used by a task with priority greater than or equal to T;

- Claim: A task T; can be blocked for at most the duration of a single critical section of
at most one lower priority task that uses a resource that is used by a task with priority
= TT;

- Ceiling of resource R, is the priority of the highest priority task that uses R,

* C(Ry) = max {m;: T; ever uses R}
i€[n]

- Claim recast: A task T; can be blocked for at most the duration of a single critical
section of at most one lower priority task that ever uses a resource R, with C(R;) =
Ty

Highest Locker Priority: Blocking time computation

Claim: A task T; can be blocked for at most the duration of a single critical
section of at most one lower priority task that ever uses a resource Rj, with
C(Rk) > TT;

B; = max{§; :m; < m;, T; uses R, C(R,) = m;}

Proof of Claim

« Suppose task T; is blocked by two critical sections

- Then both critical sections must belong to two different lower priority tasks
(why?)

resource R, used by task T; m <7 < C(Ry)
resource R, used by task T, m, <17 < C(Rp) ()

- Since T; is blocked on both resources, it must be that tasks T; and T, were in
their critical sections when task T; arrived

- Then one of T, or T, must have preempted the other inside its critical section —>
say T, preempted T, while T, is in its critical section using R,

« This means that r; > C(R})

« Butm; >m, »m; >C(R,) contradicts ()

10

A useful tool: The resource graph

Ry, C(Ry) = 1y B, =?
B, =7

R,,C(R,) =1 2

2 2 3 B, =7

R3,C(R3) = my B, =0

B; = max{§; ;:m; < m;, T; uses Ry, C(R}) = m;}

- List jobs in priority order and resources in any order, creating a node for each

- Create an edge between task T; and resource Ry, if Tj uses Ry

- Label arc (T, Ry) with the length of the longest critical section of T; that uses
Ry, 8; . (even if critical sections are nested)

 Label each resource node R, by its ceiling C(R;,)

Highest Locker Priority: Problems

- HLP causes unnecessary blocking

« A higher priority task is blocked on its arrival, not when it attempts to request the
resource

- Solution: delay blocking until the task attempts to request shared resource - PIP!

12

The priority inheritance protocol

- Allow a task to inherit the priority of the highest priority task that it is blocking

- When a hp task is blocked as it attempts to acquire a resource that is held by a
lower priority task, it transfers its priority to that lower priority task

Attempt to lock S
results in blocking
High-priority task

[:‘\ \\ Unlock S
Preempt Lock S
v
Intermediate-priority tasks
Lock S Priority inheritance
Unlock S
Low-priority task \ + /

S .

13

The priority inheritance protocol

B normal execution

1 critical section direct blocking

/ push-through blocking
& %lll/ //

/l, -
7 . T ? I
s k , B
t() tl t2 t3 t4 t5 t6 t7
Dynamic priority of T 173 (t) -
" T2 - |
73 ‘

If | am a task, priority inversion occurs when

(a) Lower priority task holds a resource | need
(direct blocking)

(b) Lower priority task inherits a higher priority than
me because it holds a resource the higher-
priority task needs (push-through blocking) y

The priority inheritance protocol

+ In general, a task’s dynamic priority is the highest priority among all task that are blocked on it

« Resource Release Rule: When a task releases a resource, its dynamic priority (t) is set to the
highest priority of the tasks currently blocked by it

« Q: When a task exits a critical section, does it always resume the priority it had when it entered?

[
1

T1

Dynamic 71
priority o

normal execution

critical section

-

\ :requeést a :
: m4/ b

requestb release a

b b a

release b

Push-thru
blocking on R,

15

The priority inheritance protocol

* Priority inheritance is transitive

* However, transitive priority inheritance can occur only in the presence of nested critical
sections (proof in book Lemma 7.2)

T1

T3 hb b b

Dynamic 14
priority T2

-

;a.z

né (t) becémes T
a f \

b

a

m3(t)gets updated transitively to my

0fT3 7'('3

16

Maximum blocking time

- Claim1: If there are ¢; lower-priority tasks that can block task t;, then t;
can be blocked for at most the duration of ¢; critical sections (one for
each of the ¢; lower-priority tasks), regardless of the number of
semaphores used by t;

- A critical section z; , of a lower priority task T; can block T; if it causes either direct or
push-thru blocking to T;

- Claim2: If there are s; distinct semaphores that can block task t;, then t;
can be blocked for at most the duration of s; critical sections, one for
each of the s; semaphores, regardless of the number of critical sections
used by t;

- Then, if all critical sections are of equal length, b;
- Blocking time B; = b; X min(¥;, s;)

- What if the critical sections are of differing lengths?

17

General approach to computing blocking times

- What if the critical sections are of differing lengths?
« Will consider a safe approximation to blocking time.
- Assumption: no nested critical sections
« For a high-priority task

- Examine all tasks with lower priority

- Determine the worst-case blocking that it may offer (consider the highest
priority that it can inherit)

« Examine all semaphores/resources
« Determine the worst-case blocking due to that resource

« Consider lower-priority tasks that may inherit a higher priority when they
hold the semaphore

Maximum blocking time

sempahore S,

This is just a safe approximation
(upper bound on exact blocking time)
Exact blocking time computation is intractable

What if the critical sections are of differing lengths?
dj k- length of longest critical section among all those of T; guarded by

Let z; , denote the critical section (CS) whose length is §;

(1) Blocking due to lower priority tasks that can block T; (claim1)

- Atask T; can block T; if it has lower priority than T; and uses some resource Ry that is
also used by a task with priority greater than or equal to T;

n

ke{1,...m}

j=it+1

Bf = z max {5]-,,{: Zj \ is max. length CS that can block Ti} /\

(2) Blocking due to semaphores that can block T; (claim 2)

B; = min(B{, B})

- Aresource can block T; if it is used by a lower priority task and a task with priority > m;

Jj>i

m
B} = z max{Sj,k: zj \ is max. length CS that can block Ti}
k=1

Simplifying matters

- Use resource ceilings (very useful device)
« Recall: C(R,) = max{m;: T; uses R} }
i€[n]

- Claim: In the absence of nested critical sections, a critical section z; ;. of T; using
resource Ry, can block t; only if m; < m; < C(Ry)

* Proof in text; Lemma 7.5

e N\ T o
Bf = z m,?x{df'k: Zj i is max. length CS that can block Ti} Bi{’ — Z m,le{Sj,ki C(Ry) = m; }

j=i+1 j=i+1

AN

Ut m
B} = Z max{5j,k: zj . is max. length CS that can block Ti} 8 = z max{6j v C(R) = ”i}
j>i -
_ k=1 k=1

Schedulability tests

« For the fixed-priority scheduling case
« We can use the Liu & Layland bound with some modifications

 For task Tk: we need to consider the blocking by lower priority tasks
k—1

er + By e; 1 /k
< k(2777 =1
. z @

K For task Tk, we need to consider:
Each instance of a task mlght experience (a) preemption by higher priority tasks

blocking (worst case); equivalent to — (b) blocking from lower priority tasks
increasing the execution time of the task by bound for Tk involves only k tasks
the blocking time.

Why do we test each task
separately? Why can we not have
one utilization bound test like we did

earlier?

21

Example: blocking and schedulability

« Consider the following set of tasks, which share resources R1, R2 and R3
+ Relative deadline are equal to periods; tasks scheduled using RM policy
« T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each
« T2: P2=30, e2=6, uses R2 and Rz simultaneously for 2 time units

« T3: P3=50, e2=10, uses R1 and Rs separately for 3 anth time units

respectively \

« T4: P4=80, e2=8, uses R2 for 5 time units |s there a difference?

Without resource constraints

3 6 10 8
U—20+30+50+80—0.65<0.69

The task set satisfies the Liu and Layland bound; easily schedulable by RM

22

Example: blocking and schedulability

« Consider the following set of tasks, which uses resources R, R2 and R3

- Relative deadline are equal to periods; tasks scheduled using RM policy

T1: P1=20, e1=3, uses R1 and Rz separately for 1 time unit each

T2: P2=30, e2=6, uses R2 and Rs simultaneously for 2 time units

T3: P3=50, e2=10, uses R1 and Rs3 separately for 3 and 4 time units respectively

+Z < k(2'/*F — 1)

T4: P4=80, e2=8, uses R2 for 5 time units

With resource constraints

T1 can potentially be blocked by T2, Tz and T+

It can be blocked by T2 on resource Rz for up to 6 time units (because it might wait for Ts)
It can be blocked by T3 on resource R for up to 3 time units

It can be blocked by T4 on resource R2 for up to 5 time units

Then maximum wait on lower priority tasks is B{ = 6 + 3 5 = 14

The worst-case wait for R is 3 units (only Ts can block T7)
The worst-case wait for Rz is 6 units (T2 can block T7 for
Then maximum wait for resourcesis B =3+ 6 =9
Then B; = min(1

9 3

2 %
50 " 20 <

units or T4 can block T for 5 units)

9)=9

T1is schedulable

23

Example: blocking and schedulability

« Consider the following set of tasks, which uses resources R, R2 and R3

Relative deadline are equal to periods; tasks scheduled using RM policy

T1: P1=20, e1=3, uses R1 and Rz separately for 1 time unit each

T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

« T4: P4=80, e2=8, uses R2 for 5 time units By, €;
With resource constraints Fk + Z D. < k(21/k —1)
T2 can be blocked by Tsand T4 i=1""
T3 can block T2 in two ways:
directly on R3 (upto 4 units) A low priority task can block a
by obtaining priority of T7 when using R7 (upto 3 units) (push-through) high priority task at most once.
T4 can block T2 in two ways: With priority inheritance, it will
directly when using Rz (upto 5 units) get a higher priority and continue
by obtaining priority of T7 when using R2 (upto 5 units) (push-through) till it releases the lock. Therefore,
The worst-case blocking by Tz is 4 time units it can block a high priority task at
The worst-case blocking by T4 is 5 time units most once.

Maximum wait for resources is B, = 5 + 4 = 9 = BY (check for yourself that BS = 12)

9 3 6
= — + —] =0. .82 '
o L (20 - 30) 0.65 < 0.8 T2 is schedulable

24

Example: blocking and schedulability

« Consider the following set of tasks, which uses resources R, R2 and R3

- Relative deadline are equal to periods; tasks scheduled using RM policy

T1: P1=20, e1=3, uses R1 and Rz separately for 1 time unit each

T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

T4: P4=80, e2=8, uses R2 for 5 time units

B k
With resource constraints — . Z < k(21 - 1)
T3 can be blocked by T4
even when it shares no resource with Tz (lower priority task)
Notice that T4« might execute with priority of T7 (priority inheritance)
T4 might execute with the priority of T7 for at most 5 time units
Classic case of push-through blocking

Maximum blocking due to T4 is 5 time units; Bz = 5

5 3 6 10 :
P + (20 1 30 + 50) = 0.65 T3 is schedulable

25

Example: blocking and schedulability

« Consider the following set of tasks, which uses resources R1, R2 and Rs

 Relative deadline are equal to periods; tasks scheduled using RM policy

T1: P1=20, e1=3, uses R1 and Rz separately for 1 time unit each

T2: P2=30, e2=6, uses R2 and Rs simultaneously for 2 time units

T3: P3=50, e2=10, uses R7 and Rs separately for 3 and 4 time units respectively

T4: P4=80, e2=8, uses R2 for 5 time units
+Z— < k(21 — 1)
=1

With resource constraints

T4 can never be blocked

because it is the lowest priority task
Maximum wait for resources is B4 =0

3 6 10 8 .
(20 + 30 + 50 + 80) = 0.65 T4is schedulable

26

Does priority inheritance solve all problems?

- Actually, not all problems

- We can still have a deadlock if resources are locked in opposing orders

Lock R,

T

)

Request (R;)
Request (R;)

Request (R;)
Request (R;)

\ Try R, Block
“

A

Preemption

T2 R1 \ 4

/

Lock R,

AN

Try R,, Deadlock

27

Deadlocks

- Can attribute it to sloppy programming
 But can we solve the problem in a different way

- Avoid deadlocks by designing a suitable protocol

Lock Rz
\ Try R, Block
o
Ty [Ry |
Preemptionﬂ
-I-2 R1 \ R1

/ AN

Lock R, Try Ry, Deadlock

Another problem with PIP: Chained blocking

« When 1, attempts to use its resources, it is blocked for the duration of 2 critical

sections:
« once to wait for T3 to release S,
« and then to wait for 1, to release S,

* In the worst case, if T; accesses n distinct semaphores that have been locked by n
lower-priority tasks, 7; will be blocked for the duration of n critical sections.

I LSS

Release S,

Request S,

a .////////////

b

Req u:est S,
T2 h b LIl 7%

T3 ha a

.
(]

Avoiding Multiple Blocking

* When a task enters a critical section, make sure that there are sufficient
resources to satisfy its maximum resource requirements

* Consequence: When a task enters a critical section, it cannot be blocked on
resources

* Do not allow a task to enter a critical section if there are locked resources that
can block it

* Meaning: do not allow task T; to enter a critical section at time t if there is a
locked resource Ry, with C(Ry) = m;

- Iff allow task T; to enter a critical section at time t if m; > C(R},) for every
locked resource Ry,

* Iff allow task T; to enter a critical section if
m; > max{C(Ry): Ry locked attime t} = C(t)

Priority ceiling protocol

- Definition: the priority ceiling of a semaphore is the highest priority among all
tasks that can lock the semaphore

- A task that requests lock Rk is denied if its priority is not strictly higher than the
highest priority ceiling of all currently locked semaphores (let us say this
belongs to semaphore Rn; Can there be more than one?)

- The task is said to be blocked by the task holding semaphore Rn

- A task inherits the priority of the top higher-priority task it is blocking

31

Priority Ceiling Protocol (PCP)

Recall: Priority Ceiling of resource R;: C(Ry) = r_g[a>]<{ni: T; uses R}
len

Suppose task T; requests a resource R, at time t

Let Ry, = argmaxj{C(Rj): resource R; is locked at time t}

« Can there be more than one such R;?

Define System Ceiling as the highest ceiling of currently locked
semaphores - C(t) = C(Ry) = max{C(Rj): R; locked at time t}

« System ceiling updated whenever a resource is acquired/released

If r; < C(t), then T; is denied access to the resource

- Exception: If 7;< C(t) but T; is the task locking R;, then grant T; access to R, (o/w T;
will block itself!)

* T; is said to be blocked by the task holding semaphore R;,
« T; then trasfers its priority to task holding R,

33

Priority ceiling protocol

- To avoid multiple blocking, this rule does not allow a task to enter a critical section if
there are locked semaphores that could block it.

- This means that once a task enters its first critical section, it can never be blocked by
lower-priority tasks until its completion

Similarity to PIP
Priority Inheritance rule

Fundamental difference from PIP
PIP is greedy, PCP is not!
In what sense?

A task can be blocked on a free resource in PCP
Impossible in PIP

4

Extra blocking caused by non-greediness of PCP is the price to avoid deadlocks & chained
blocking
called avoidance blocking or ceiling blocking

q

Deadlocks?

A deadlock can occur if two tasks locked semaphores in opposite order.
Can it occur with the priority ceiling protocol?

T T
Request(R;) Request(R;)
Lock R, Request(Ry) Request(R;)
Signal(Rq) Signal(R;)
\ /Try Rs, Block Signal(R;,) Signal(Ry)
Ty R, |
Preemption
1T; > C(t) means that this cannot happen!
Extra blocking caused by non-greedy nature of PCP
T2 R; R; is the price to avoid deadlocks
/ '\ called avoidance blocking
Lock R1 Try R,, Deadlock

Priority ceilings

«T7 and T2 use R1 and R2: the priority ceiling of a resource is the priority of the

highest priority task that uses it, therefore the priority ceilings of R7 and R2 are the
same: the priority of T1

Lock R,: Denied because its priority is
not higher than ceiling of R;

\

A task that requests lock Rk is denied if its
priority is not higher than the highest priority
ceiling of all currently locked semaphores

A task inherits the priority of the top higher-
priority task it is blocking

T 1
' hiah Lock R:
. Inherit higher priorit succeeds because T, inherits
Preemptlon J /Q) y priority of T; and holés R,
‘ 4 I
R, R, R,
T2 / /A \
| ock R, Unlock R,

Unlock R,

36

PCP blocking time computation

- A task can be blocked by the duration of at most one critical section of
at most one lower priority task

- Much simpler to compute than PIP

« Should consider the three types of blocking and take the max of them

- Resource graph to our rescue!

Schedulability test for priority ceiling protocol

« The test is the same as with the priority inheritance protocol

« Worst-case blocking time may change when compared to PIP

For task T«

39

Recall: Highest Locking Protocol (HLP)
= PCP with Immediate inheritance

- Priority ceiling protocol with slight difference: when a semaphore is locked, the
locking task raises its priority to the ceiling of the semaphore (immediate
inheritance).

When the semaphore is unlocked the task’s priority is restored.

Instance of T1 released; no preemption

I -

Lock R2:

succeeds because T2 inherits :
priority of T1 and holds R1 Preemptlon

|
D |

Tz/ /‘ '\

Lock R1; inherit T1's priority Unlock R2 Unlock R1; priority drops to original level

T1

Stack-based resource policy

« Let us attempt to support dynamic-priority systems
« Does PCP extend directly?

- Task priorities in dynamic-task (equivalently fixed-job) priority systems might
change at every invocation

 Resource ceilings are no longer static: Must be updated potentially at every
invocation. High runtime overhead!

 Observation: That a job J, has a higher priority than another job J, and that they
both require some resource does not imply that J,can directly block J,

« This blocking can occur only when it is possible for J, to preempt J,

- When determining whether a free resource can be granted to a job, it is not
necessary to be concerned with the resource requirements of all higher-priority
jobs; only those that can preempt the job

41

Stack-based resource policy

- Since for resource contention purposes we only care about the jobs
that a job can possibly preempt, let us identify the event that causes a
job to be preempted in any task-dynamic priority scheduling scheme

- In a dynamic-task policy, when can a job preempt another job?

A
v

A
v

42

Stack-based resource policy

* A quantity that encodes a job’s ability to preempt other jobs

* (*) Formally, we want to associate job J, with quantity ¥, such that
if Y, < Y;, then it is not possible for J,. to preempt J;

*], cannot preempt J; & eitherr, < r;orm, < m;

* Then (*) translates to:

(xx) ifr, > 1r; and m, > m;, then Y, > Y; (it’s possible for J; to preempt J;)

* A Yy, satisfying (*x) is called the preemption level of job J

* Q: How does Y, look like for EDF?

43

Stack-based resource policy with EDF

* Priority is inversely proportional to the absolute deadline
- Preemption level is inversely proportional to the relative deadline
* Observe that:

« If A arrives after Band Priority(A) > Priority(B) then
PreemptionLevel (A) > PreemptionLevel (B)

A
v

A
v

44

Stack-based resource policy

The preemption level i; of J; is any quantity satisfying the statement:
if , > r; and m, > m;, then Y, > Y,

Q: How does 1; look like for EDF?

EDF:

s My >m;iffr, + D <713+ D;

* Sor; <rgimpliesr; + D, <71+ D; > Dy, < D;
* Y > Y & D <Dy

* For EDF, this quantity is for the entire task, not only a job!

The possibility that a task preempts other tasks remains constant throughout all its
invocations

* Task’s preemption level is static; can be computed offline once and for all

EDF is one such fixed preemption-level system

* In such systems, the potentials of resource contentions do not change with time, just as in fixed-priority

systems, and hence can be analyzed statically 45

Stack-based resource policy

- In fixed-preemption level systems, the set of critical sections that can block T; are

{Zig: i >), C(Ry) = ¢y}
- Stack-based resource policy [SRP]

« Preemption level: Any fixed value that satisfies the statement “If A arrives after B and
Priority(A) > Priority(B) then PreemptionLevel(A) > PreemptionLevel(B)”

- Resource ceiling for resource R: Highest preemption level of all tasks that may
access the resource R

- System ceiling: Highest resource ceiling among all currently locked resources
« A task can preempt another task if both:
« it has the highest priority; and

- its preemption level is higher than the system ceiling

46

Stack-based resource policy

 Resource ceiling C(R;,) = max{y;: T; uses R} }

« System ceiling C(t) = max{C(Ry): resource Ry, is being used at time t}

SRP Preemption Test

A task can preempt another task if both:
* it has the highest priority; and
* its preemption level is higher than the system ceiling

If T; is the highest priority task at time t and y; > C(t) then allow T; to preempt,
otherwise block it

- Perform preemption test when a task arrives (on the arriving task), and on
highest priority task when C(t) decreases (a resource is released)

47

Priority ceiling vs. stack-based resource policy

Need blue but
priority is lower
than red ceiling

Need but
priority is lower
than red ceiling

Need red but
priority is lower

/ than red ceiling

Priority Ceiling Protocol

Ts

T, \ \ .:-

T, \ I
\

e BN B

48

Priority ceiling vs. stack-based resource policy

Can't preempt. Stack-based Resource Policy
Preemption level is not
higher than ceiling.

|

T, \ V—-

\

T, l [|

T

Releases red,
C(t) decreases to 0,

perform preemption test on highest priority task available 9

Priority ceiling vs. stack-based resource policy

Stack-based Resource Policy

Can't preempt.

Preemption level is not
higher than ceiling. Notice that SRP is similar to immediate inheritance in PCP.

However, with no static priority levels, it needs a
\ \ preemption level.
. |

T, \ V—-

\

T, l [|

Releases red,
C(t) decreases to 0,

perform preemption test on highest priority task available >0

Stack-based resource policy

- Q: What does it mean when a task passes the preemption test?

- A: the resources that are currently available are sufficient to satisfy the
maximum requirement of task T; and the maximum requirement of
every task that could preempt Tj,.

- This means that once T}, starts executing, it will never be blocked for
resource contention.

51

Stack-based resource policy

Remarks
- SRP avoids deadlocks. Why?
- Resources are only allocated when a task requests them, not when it preempts

« A higher-priority job may preempt and use the resources between these
critical sections

- Atask can be blocked by the preemption test even though it does not require
any resource. This is needed to avoid unbounded priority inversion.

- The preemption test has the effect of imposing priority inheritance

« An executing task that holds a resource modifies the system ceiling and
resists preemption as though it inherits the priority of any tasks that might
need that resource

52

Analysis with EDF and SRP

« As simple as other protocols

Bk & €L
—+) <1
P2,

Maximum blocking due to task with
lower preemption level; in the case of
EDF: with period P; such that P« < P;.

For task Ty

Tasks are sorted such that the task with
shortest period is T7 and so on.

53

What is the “stack” in Stack-based Resource Sharing
Protocol?

Two things:
1. Can be implemented using a stack data structure. How?

2. Allows tasks to share the run-time stack.

Refer to the paper for more details ...

54

In-class activity

Determine if the following task set can be scheduled using the rate monotonic scheduling
policy with the priority ceiling protocol to control resource access.

Task e; P; Resources used

7. 4 10 Ri, R»
T, 5 20 R, R;
T; 10 35 R,
T, 2 40 R,

The duration for which each resource is used by the tasks is specified in the following
table. You may assume that a task locks only one resource at a time.

Resource Duration
R, 2
R, 1
R; 2

Highlights

* Schedulability analysis needs to account for blocking due to low priority tasks
* Priority inheritance protocol (PIP) may not prevent deadlocks
* Deadlocks can be prevented with the priority ceiling protocol (PCP)

* To deal with dynamic priority policies (such as EDF), we need a different policy: the
stack-based resource policy (SRP)

* SRP (and the immediate inheritance version of the PCP) have efficient
implementations

* Reduce the number of context switches

* SRP also prevents deadlocks (note the similarities between PCP and SRP)

56

