
Schedulability with resource sharing

Priority inheritance protocol

Priority ceiling protocol

Stack resource policy

1

Lecture overview

• We have discussed the occurrence of unbounded priority inversion

• We know about blocking and blocking times

• Now: Evaluating schedulability in combination with protocols for avoiding
unbounded priority inversion

• Priority ceiling protocol to prevent deadlocks

• Stack-based resource policy

• Improves on other policies

• Extends to EDF

2

Blocking

• Tasks have synchronization constraints

• Use semaphores to protect critical sections

• Blocking can cause a higher priority task to wait for a lower priority task
to unlock a resource

• We always assumed that higher priority tasks can preempt lower
priority tasks

• To make rules consistent, we discussed the priority inheritance
approach

3

General Model and Assumptions

• Assumption: Each resource has one instance only (binary semaphores)

• Assumption: Resource requests are properly nested

• Assumption: We have perfect knowledge of all task resource
requirements

• Except for SRP, all protocols are designed for static-priority scheduling

• Each resource has a semaphore queue

4

Semaphore Queue
Resource

1

Semaphore Queue
Resource

2

Semaphore Queue
Resource

M

Approach #1: Non-Preemptive Protocol (NPP)

• Whenever a task requests a resource, make it the highest priority task
for the duration of its critical section

• The good: Easy to Implement

• The bad: unnecessarily blocks higher priority tasks that do not request
resources

5R

R

Non-Preemptive Protocol: Blocking time computation

• A task 𝑇! can be blocked only by a lower priority task that has requested a
resource before 𝑇! ’s arrival

• Key: Whenever a task is in a critical section, it cannot be preempted

• The lower priority task resumes its static priority as soon as it releases all
resources in the critical section

• As soon as the lower priority task releases the resource, the highest priority task
available will acquire the processor and it will not be blocked again

• Conclusion: Worst case blocking time is the duration of the longest critical
section of any lower priority task

6

Let 𝛿",$: duration of longest critical section of task 𝑗 using resource 𝑅$

Blocking time 𝑩𝒊 = 𝐦𝐚𝐱 𝜹𝒋,𝒌: 𝝅𝒋 < 𝝅𝒊, 𝑱𝒋 𝐮𝐬𝐞𝐬 𝐫𝐞𝐬𝐨𝐮𝐫𝐜𝐞 𝑹𝒌

Note: If no lower priority task uses any resources, then 𝐵! = 0; i.e., max ∅ = 0

Approach #2: Highest Locker Priority (HLP)

• Problem with non-preemptive protocol: unnecessarily blocks higher priority
tasks that do not need resources

• SOLUTION: When a task requests resource 𝑅$, elevate its priority to the priority
of the highest priority task that ever shares (uses) resource 𝑅$

7

𝑅!

𝑅!

Dynamic priority
of 𝜏! ⇡1

<latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit><latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit><latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit>

⇡2
<latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit><latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit><latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit>

⇡3
<latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit><latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit><latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit>

⇡3(t)
<latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit><latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit><latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit>

𝜏" finishes

𝑅!

Scheduling decisions are
Based on dynamic priorities 𝜋# 𝑡

Highest Locker Priority: Blocking time computation

• When a task requests resource 𝑅" , elevate its priority to the priority of the highest
priority task that ever shares resource 𝑅"

• Observation: Task 𝑇# can be blocked only by lower priority tasks that use a resource
that is ever used by a task with priority greater than or equal to 𝑇#

• Claim: A task 𝑇# can be blocked for at most the duration of a single critical section of
at most one lower priority task that uses a resource that is used by a task with priority
≥ 𝜋#

• Ceiling of resource 𝑅" is the priority of the highest priority task that uses 𝑅"

• 𝐶 𝑅" = max
#∈ %

𝜋#: 𝑇# ever uses 𝑅"

• Claim recast: A task 𝑇# can be blocked for at most the duration of a single critical
section of at most one lower priority task that ever uses a resource 𝑅" with 𝐶 𝑅" ≥
𝜋#

8

Highest Locker Priority: Blocking time computation

Claim: A task 𝑇! can be blocked for at most the duration of a single critical
section of at most one lower priority task that ever uses a resource 𝑅" with
𝐶 𝑅" ≥ 𝜋!

9

𝐵! = max 𝛿",$: 𝜋" < 𝜋! , 𝑇" uses 𝑅$, 𝐶 𝑅$ ≥ 𝜋!

Proof of Claim

• Suppose task 𝑇! is blocked by two critical sections

• Then both critical sections must belong to two different lower priority tasks
(why?)

• Since 𝑇! is blocked on both resources, it must be that tasks 𝑇(and 𝑇) were in
their critical sections when task 𝑇! arrived

• Then one of 𝑇(or 𝑇) must have preempted the other inside its critical section –>
say 𝑇(preempted 𝑇) while 𝑇) is in its critical section using 𝑅*

• This means that 𝜋(> 𝐶 𝑅*

• But 𝜋! > 𝜋(→ 𝜋! > 𝐶 𝑅* contradicts (∗)

10

𝜋(< 𝜋! ≤ 𝐶 𝑅+
𝜋) < 𝜋! ≤ 𝐶 𝑅* (∗)

resource 𝑅+ used by task 𝑇(
resource 𝑅* used by task 𝑇)

A useful tool: The resource graph

• List jobs in priority order and resources in any order, creating a node for each

• Create an edge between task 𝑇" and resource 𝑅$ if 𝑇" uses 𝑅$

• Label arc 𝑇" , 𝑅$ with the length of the longest critical section of 𝑇" that uses
𝑅$, 𝛿",$ (even if critical sections are nested)

• Label each resource node 𝑅$ by its ceiling 𝐶 𝑅$ 11

T1

T2

T3

T4

𝑅&, 𝐶 𝑅& = 𝜋&

𝑅', 𝐶 𝑅' = 𝜋(

𝑅(, 𝐶 𝑅(= 𝜋&

𝐵(=?
𝐵) = ?
𝐵, = ?
𝐵- = 0

3
5

7

121

20

𝐵! = max 𝛿",$: 𝜋" < 𝜋! , 𝑇" uses 𝑅$, 𝐶 𝑅$ ≥ 𝜋!

Highest Locker Priority: Problems

• HLP causes unnecessary blocking

• A higher priority task is blocked on its arrival, not when it attempts to request the
resource

• Solution: delay blocking until the task attempts to request shared resource à PIP!

12

The priority inheritance protocol

• Allow a task to inherit the priority of the highest priority task that it is blocking

• When a hp task is blocked as it attempts to acquire a resource that is held by a
lower priority task, it transfers its priority to that lower priority task

13

High-priority task

Low-priority task

Lock S

Preempt

Intermediate-priority tasks

Attempt to lock S
results in blocking

Lock S
Unlock S

Unlock S

Priority inheritance

The priority inheritance protocol

If I am a task, priority inversion occurs when
(a) Lower priority task holds a resource I need

(direct blocking)
(b) Lower priority task inherits a higher priority than

me because it holds a resource the higher-
priority task needs (push-through blocking)

14

Dynamic priority of
𝜏!

⇡3(t)
<latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit><latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit><latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit>⇡1

<latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit><latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit><latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit>

⇡2
<latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit><latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit><latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit>

⇡3
<latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit><latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit><latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit>

Dynamic
priority

of 𝜏$

⇡1
<latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit><latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit><latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit>

⇡2
<latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit><latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit><latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit>

⇡3
<latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit><latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit><latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit>

⇡3(t)
<latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit><latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit><latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit>

request b

request a

release b

release a

Push-thru
blocking on Ra

The priority inheritance protocol

15

• In general, a task’s dynamic priority is the highest priority among all task that are blocked on it

• Resource Release Rule: When a task releases a resource, its dynamic priority 𝜋 𝑡 is set to the
highest priority of the tasks currently blocked by it

• Q: When a task exits a critical section, does it always resume the priority it had when it entered?

The priority inheritance protocol

16

• Priority inheritance is transitive

• However, transitive priority inheritance can occur only in the presence of nested critical
sections (proof in book Lemma 7.2)

Dynamic
priority

of 𝜏$

⇡1
<latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit><latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit><latexit sha1_base64="WAvcn0j4A+VGraxS7fcAuO73VG0=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIQ3bis4GihHcpNJqPBTDIkGXEY/Aa3+hN+jRvFrf9h2s7Cth4IHM65l3tySCa4sb7/6c3NLywuLddW6qtr6xubjebWjVG5piykSijdJWCY4JKFllvBuplmkBLBbsnDxdC/fWTacCWvbZGxKIU7yRNOwTop7Gd8EAwaLb/tj4BnSVCRFqrQGTS9Zj9WNE+ZtFSAMb3Az2xUgracCvZc7+eGZUAf4I71HJWQMhOVo7TPeM8pMU6Udk9aPFL/bpSQGlOkxE2mYO/NtDcU//N6FMQpUUrG6klF5dAHkYAbxaTABGI2eYakU0FtchyVXGa5ZZKOcya5wFbhYXM45ppRKwpHgGruvorpPWig1vVbdyUG05XNkvCgfdL2rw5bZ+dVmzW0g3bRPgrQETpDl6iDQkQRRy/oFb15796H9+V9j0fnvGpnG03A+/kFib+mqw==</latexit>

⇡2
<latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit><latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit><latexit sha1_base64="0od4x9aSUEymk4B6wnY2FyMzfFY=">AAACK3icbVDLSgMxFM34rPXV6tJNsAiuyowI6kIounFZwbFCO5SbTEaDmWRIMmIZ+g1u9Sf8GjeKW//DtJ2FbT0QOJxzL/fkkExwY33/01tYXFpeWa2sVdc3Nre2a/WdW6NyTVlIlVD6joBhgksWWm4Fu8s0g5QI1iGPlyO/88S04Ure2EHGohTuJU84BeuksJfx/lG/1vCb/hh4ngQlaaAS7X7dq/diRfOUSUsFGNMN/MxGBWjLqWDDai83LAP6CPes66iElJmoGKcd4gOnxDhR2j1p8Vj9u1FAaswgJW4yBftgZr2R+J/XpSDOiVIyVs8qKkY+iATcKCYDTCBm02dIOhPUJqdRwWWWWybpJGeSC2wVHjWHY64ZtWLgCFDN3VcxfQAN1Lp+q67EYLayeRIeNc+a/vVxo3VRtllBe2gfHaIAnaAWukJtFCKKOHpBr+jNe/c+vC/vezK64JU7u2gK3s8vi4KmrA==</latexit>

⇡3
<latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit><latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit><latexit sha1_base64="Nnapnpeg30vsytJ5b81Mwozx05o=">AAACK3icbVDLSgMxFM34rPVZXboJFsFVmaqgLoSiG5cVHCu0Q7nJZNpgJhmSjDgMfoNb/Qm/xo3i1v8w03ahrQcCh3Pu5Z4ckgpurO9/eHPzC4tLy5WV6ura+sbmVm371qhMUxZQJZS+I2CY4JIFllvB7lLNICGCdcj9Zel3Hpg2XMkbm6csTGAgecwpWCcFvZT3j/pbdb/hj4BnSXNC6miCdr/m1XqRolnCpKUCjOk2/dSGBWjLqWBP1V5mWAr0Hgas66iEhJmwGKV9wvtOiXCstHvS4pH6e6OAxJg8IW4yATs0014p/ud1KYhzopSM1KMKi9IHEYMbxSTHBCL29wxJpoLa+DQsuEwzyyQd54wzga3CZXM44ppRK3JHgGruvorpEDRQ6/qtuhKb05XNkuCwcdbwr4/rrYtJmxW0i/bQAWqiE9RCV6iNAkQRR8/oBb16b9679+l9jUfnvMnODvoD7/sHjUWmrQ==</latexit>

⇡3(t)
<latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit><latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit><latexit sha1_base64="2LLxpvTjcv8JU1wcE0KlGdI64e8=">AAACLnicbVDLSgMxFM34rPXV6tJNsAi6KVMV1IVQdOOygmML7VBuMhkNZpIhyYjD0J9wqz/h14gLcetnmD4WtnogcDjnXu7JIangxvr+hzc3v7C4tFxaKa+urW9sVqpbt0ZlmrKAKqF0h4BhgksWWG4F66SaQUIEa5OHy6HffmTacCVvbJ6yMIE7yWNOwTqp00t5/2jfHvQrNb/uj4D/ksaE1NAErX7Vq/YiRbOESUsFGNNt+KkNC9CWU8EG5V5mWAr0Ae5Y11EJCTNhMQo8wHtOiXCstHvS4pH6e6OAxJg8IW4yAXtvZr2h+J/XpSDOiVIyUk8qLIY+iBjcKCY5JhCx6TMkmQlq49Ow4DLNLJN0nDPOBLYKD8vDEdeMWpE7AlRz91VM70EDta7isiuxMVvZXxIc1s/q/vVxrXkxabOEdtAu2kcNdIKa6Aq1UIAoEugZvaBX78179z69r/HonDfZ2UZT8L5/AF4Sp5A=</latexit>

𝜋" 𝑡 becomes 𝜋#

𝜋! 𝑡 gets updated transitively to 𝜋#

Maximum blocking time

• Claim1: If there are ℓ𝒊 lower-priority tasks that can block task 𝜏! , then 𝜏!
can be blocked for at most the duration of ℓ𝒊 critical sections (one for
each of the ℓ! lower-priority tasks), regardless of the number of
semaphores used by 𝜏!
• A critical section 𝑧+," of a lower priority task 𝑇+ can block 𝑇# if it causes either direct or

push-thru blocking to 𝑇#

• Claim2: If there are 𝒔𝒊 distinct semaphores that can block task 𝜏! , then 𝜏!
can be blocked for at most the duration of 𝒔𝒊 critical sections, one for
each of the 𝑠! semaphores, regardless of the number of critical sections
used by 𝜏!

• Then, if all critical sections are of equal length, 𝑏!
• Blocking time 𝐵! = 𝑏! ×min(ℓ! , 𝑠!)

• What if the critical sections are of differing lengths?
17

General approach to computing blocking times

• What if the critical sections are of differing lengths?

• Will consider a safe approximation to blocking time.

• Assumption: no nested critical sections

• For a high-priority task

• Examine all tasks with lower priority

• Determine the worst-case blocking that it may offer (consider the highest
priority that it can inherit)

• Examine all semaphores/resources

• Determine the worst-case blocking due to that resource

• Consider lower-priority tasks that may inherit a higher priority when they
hold the semaphore

• What if the critical sections are of differing lengths?
• 𝛿",$: length of longest critical section among all those of 𝑇" guarded by

sempahore 𝑆$
• Let 𝑧",$ denote the critical section (CS) whose length is 𝛿",$

• (1) Blocking due to lower priority tasks that can block 𝑇! (claim1)
• A task 𝑇+ can block 𝑇# if it has lower priority than 𝑇# and uses some resource 𝑅" that is

also used by a task with priority greater than or equal to 𝑇#

• (2) Blocking due to semaphores that can block 𝑇! (claim 2)
• A resource can block 𝑇# if it is used by a lower priority task and a task with priority ≥ 𝜋#

Maximum blocking time

19

𝐵! = min 𝐵!ℓ, 𝐵!/

This is just a safe approximation
(upper bound on exact blocking time)
Exact blocking time computation is intractable

𝐵#ℓ = #
&'#("

)

max
!∈ ",…,-

𝛿&,!: 𝑧&,! is max. length CS that can block 𝑇#

𝐵#
. = #

!'"

-

max
&/#

𝛿&,!: 𝑧&,! is max. length CS that can block 𝑇#

• Use resource ceilings (very useful device)

• Recall: 𝐶 𝑅$ = max
!∈ 1

𝜋!: 𝑇! uses 𝑅$

• Claim: In the absence of nested critical sections, a critical section 𝑧",$ of 𝜏" using
resource 𝑅$ can block 𝜏! only if 𝜋" < 𝜋! ≤ 𝐶 𝑅$

• Proof in text; Lemma 7.5

Simplifying matters

𝐵#ℓ = #
&'#("

)

max
!

𝛿&,!: 𝑧&,! is max. length CS that can block 𝑇#

𝐵#
. = #

!'"

-

max
&/#

𝛿&,!: 𝑧&,! is max. length CS that can block 𝑇#

𝐵#ℓ = #
&'#("

)

max
!

𝛿&,!: 𝐶 𝑅! ≥ 𝜋#

𝐵#. = #
!'"

-

max
&/#

𝛿&,!: 𝐶 𝑅! ≥ 𝜋#

ek +Bk

Pk
+

k�1X

i=1

ei
Pi

6 k(21/k � 1)

Schedulability tests

• For the fixed-priority scheduling case

• We can use the Liu & Layland bound with some modifications

• For task Tk: we need to consider the blocking by lower priority tasks

For task Tk, we need to consider:
(a) preemption by higher priority tasks
(b) blocking from lower priority tasks

bound for Tk involves only k tasks

Why do we test each task
separately? Why can we not have
one utilization bound test like we did
earlier?

21

Each instance of a task might experience
blocking (worst case); equivalent to
increasing the execution time of the task by
the blocking time.

Example: blocking and schedulability

• Consider the following set of tasks, which share resources R1, R2 and R3

• Relative deadline are equal to periods; tasks scheduled using RM policy

• T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

• T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

• T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units
respectively

• T4: P4=80, e2=8, uses R2 for 5 time units

Without resource constraints

The task set satisfies the Liu and Layland bound; easily schedulable by RM

Is there a difference?

22

Example: blocking and schedulability

• Consider the following set of tasks, which uses resources R1, R2 and R3

• Relative deadline are equal to periods; tasks scheduled using RM policy

• T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

• T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

• T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

• T4: P4=80, e2=8, uses R2 for 5 time units

With resource constraints
T1 can potentially be blocked by T2, T3 and T4

It can be blocked by T2 on resource R2 for up to 6 time units (because it might wait for T3)
It can be blocked by T3 on resource R1 for up to 3 time units
It can be blocked by T4 on resource R2 for up to 5 time units
Then maximum wait on lower priority tasks is 𝑩𝟏ℓ = 𝟔 + 𝟑 + 𝟓 = 𝟏𝟒

The worst-case wait for R1 is 3 units (only T3 can block T1)
The worst-case wait for R2 is 6 units (T2 can block T1 for 6 units or T4 can block T1 for 5 units)
Then maximum wait for resources is 𝑩𝟏𝒔 = 𝟑 + 𝟔 = 𝟗

Then 𝐵" = min 14, 9 = 9

T1 is schedulable 23

9

20
+

3

20
< 1

Example: blocking and schedulability

• Consider the following set of tasks, which uses resources R1, R2 and R3

• Relative deadline are equal to periods; tasks scheduled using RM policy

• T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

• T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

• T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

• T4: P4=80, e2=8, uses R2 for 5 time units
With resource constraints
T2 can be blocked by T3 and T4

T3 can block T2 in two ways:
directly on R3 (upto 4 units)
by obtaining priority of T1 when using R1 (upto 3 units) (push-through)

T4 can block T2 in two ways:
directly when using R2 (upto 5 units)
by obtaining priority of T1 when using R2 (upto 5 units) (push-through)

The worst-case blocking by T3 is 4 time units
The worst-case blocking by T4 is 5 time units
Maximum wait for resources is 𝑩𝟐 = 𝟓 + 𝟒 = 𝟗 = 𝑩𝟐ℓ (check for yourself that 𝑩𝟐𝒔 = 𝟏𝟐)

T2 is schedulable
24

A low priority task can block a
high priority task at most once.
With priority inheritance, it will
get a higher priority and continue
till it releases the lock. Therefore,
it can block a high priority task at
most once.

Example: blocking and schedulability

• Consider the following set of tasks, which uses resources R1, R2 and R3

• Relative deadline are equal to periods; tasks scheduled using RM policy

• T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

• T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

• T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

• T4: P4=80, e2=8, uses R2 for 5 time units

With resource constraints
T3 can be blocked by T4

even when it shares no resource with T4 (lower priority task)
Notice that T4 might execute with priority of T1 (priority inheritance)
T4 might execute with the priority of T1 for at most 5 time units
Classic case of push-through blocking

Maximum blocking due to T4 is 5 time units; B3 = 5

T3 is schedulable
25

Example: blocking and schedulability

• Consider the following set of tasks, which uses resources R1, R2 and R3

• Relative deadline are equal to periods; tasks scheduled using RM policy

• T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

• T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

• T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

• T4: P4=80, e2=8, uses R2 for 5 time units

With resource constraints
T4 can never be blocked
because it is the lowest priority task
Maximum wait for resources is B4 = 0

T4 is schedulable
26

Does priority inheritance solve all problems?

27

• Actually, not all problems

• We can still have a deadlock if resources are locked in opposing orders

Request(R2)
Request(R1)

T1
Request(R1)
Request(R2)

T2

R1

R2

R1

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

T1

T2

Deadlocks

• Can attribute it to sloppy programming

• But can we solve the problem in a different way

• Avoid deadlocks by designing a suitable protocol

R1

R2

R1

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

T1

T2

Preemption

Another problem with PIP: Chained blocking

29

• When 𝜏& attempts to use its resources, it is blocked for the duration of 2 critical
sections:

• once to wait for τ3 to release Sa

• and then to wait for τ2 to release Sb

• In the worst case, if τ1 accesses n distinct semaphores that have been locked by n
lower-priority tasks, τ1 will be blocked for the duration of n critical sections.

Release Sa

Request Sa Request Sb

Avoiding Multiple Blocking

• When a task enters a critical section, make sure that there are sufficient
resources to satisfy its maximum resource requirements

• Consequence: When a task enters a critical section, it cannot be blocked on
resources

• Do not allow a task to enter a critical section if there are locked resources that
can block it

• Meaning: do not allow task 𝑇! to enter a critical section at time t if there is a
locked resource 𝑅" with 𝐶 𝑅" ≥ 𝜋!

• Iff allow task 𝑇! to enter a critical section at time t if 𝜋! > 𝐶 𝑅" for every
locked resource 𝑅"

• Iff allow task 𝑇! to enter a critical section if
𝜋! > max 𝐶 𝑅" : 𝑅" locked at time 𝑡 ≡ 𝐶(𝑡)

Priority ceiling protocol

• Definition: the priority ceiling of a semaphore is the highest priority among all
tasks that can lock the semaphore

• A task that requests lock Rk is denied if its priority is not strictly higher than the
highest priority ceiling of all currently locked semaphores (let us say this
belongs to semaphore Rh; Can there be more than one?)

• The task is said to be blocked by the task holding semaphore Rh

• A task inherits the priority of the top higher-priority task it is blocking

31

Priority Ceiling Protocol (PCP)

• Recall: Priority Ceiling of resource 𝑅*: 𝐶 𝑅* = max
+∈ -

𝜋+: 𝑇+ uses 𝑅*

• Suppose task 𝑇+ requests a resource 𝑅* at time 𝑡

• Let 𝑅. = argmax/ 𝐶 𝑅/ : resource 𝑅/ is locked at time 𝑡

• Can there be more than one such 𝑅5?

• Define System Ceiling as the highest ceiling of currently locked
semaphores → 𝐶 𝑡 = 𝐶 𝑅$ = max 𝐶 𝑅% : 𝑅% locked at time 𝑡

• System ceiling updated whenever a resource is acquired/released

• If 𝜋+ ≤ 𝐶 𝑡 , then 𝑇+ is denied access to the resource

• Exception: If 𝜋#≤ 𝐶 𝑡 but 𝑇# is the task locking 𝑅5 then grant 𝑇# access to 𝑅" (o/w 𝑇#
will block itself!)

• 𝑇# is said to be blocked by the task holding semaphore 𝑅5
• 𝑇# then trasfers its priority to task holding 𝑅5

33

Priority ceiling protocol
• To avoid multiple blocking, this rule does not allow a task to enter a critical section if

there are locked semaphores that could block it.

• This means that once a task enters its first critical section, it can never be blocked by
lower-priority tasks until its completion

34

Fundamental difference from PIP
PIP is greedy, PCP is not!

In what sense?

Extra blocking caused by non-greediness of PCP is the price to avoid deadlocks & chained
blocking

called avoidance blocking or ceiling blocking

Similarity to PIP
Priority Inheritance rule

A task can be blocked on a free resource in PCP
Impossible in PIP

Deadlocks?

35

A deadlock can occur if two tasks locked semaphores in opposite order.
Can it occur with the priority ceiling protocol?

Extra blocking caused by non-greedy nature of PCP
is the price to avoid deadlocks

called avoidance blocking

𝝅𝒊 > 𝑪(𝒕) means that this cannot happen!

R1

R2

R1

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

T1

T2

Request(R2)
Request(R1)

Signal(R1)
Signal(R2)

T1

Request(R1)
Request(R2)

Signal(R2)
Signal(R1)

T2

Priority ceilings

36

•T1 and T2 use R1 and R2: the priority ceiling of a resource is the priority of the
highest priority task that uses it, therefore the priority ceilings of R1 and R2 are the
same: the priority of T1

R1 R1

Lock R1

Lock R2: Denied because its priority is
not higher than ceiling of R1

Lock R2:
succeeds because T2 inherits
priority of T1 and holds R1

Preemption

R2 R1

R2

Unlock R1
Unlock R2

Inherit higher priority

A task that requests lock Rk is denied if its
priority is not higher than the highest priority
ceiling of all currently locked semaphores

A task inherits the priority of the top higher-
priority task it is blocking

T1

T2

PCP blocking time computation

• A task can be blocked by the duration of at most one critical section of
at most one lower priority task

• Much simpler to compute than PIP

• Should consider the three types of blocking and take the max of them

• Resource graph to our rescue!

Schedulability test for priority ceiling protocol

• The test is the same as with the priority inheritance protocol

• Worst-case blocking time may change when compared to PIP

39

For task Tk

Recall: Highest Locking Protocol (HLP)
= PCP with Immediate inheritance

• Priority ceiling protocol with slight difference: when a semaphore is locked, the
locking task raises its priority to the ceiling of the semaphore (immediate
inheritance).

When the semaphore is unlocked the task’s priority is restored.

Lock R1; inherit T1’s priority

Lock R2:
succeeds because T2 inherits
priority of T1 and holds R1

Instance of T1 released; no preemption

Unlock R1; priority drops to original level

T1

T2

Unlock R2

Preemption

40

Stack-based resource policy

• Let us attempt to support dynamic-priority systems

• Does PCP extend directly?

• Task priorities in dynamic-task (equivalently fixed-job) priority systems might
change at every invocation

• Resource ceilings are no longer static: Must be updated potentially at every
invocation. High runtime overhead!

• Observation: That a job Jh has a higher priority than another job Jl and that they
both require some resource does not imply that Jl can directly block Jh

• This blocking can occur only when it is possible for Jh to preempt Jl

• When determining whether a free resource can be granted to a job, it is not
necessary to be concerned with the resource requirements of all higher-priority
jobs; only those that can preempt the job

41

Stack-based resource policy

• Since for resource contention purposes we only care about the jobs
that a job can possibly preempt, let us identify the event that causes a
job to be preempted in any task-dynamic priority scheduling scheme

• In a dynamic-task policy, when can a job preempt another job?

42

Jk

Ji

Stack-based resource policy

• A quantity that encodes a job’s ability to preempt other jobs

• (∗) Formally, we want to associate job 𝐽" with quantity 𝜓" such that
if 𝜓" ≤ 𝜓!, then it is not possible for 𝐽" to preempt 𝐽!

• 𝐽" cannot preempt 𝐽! ⇔ either 𝑟" ≤ 𝑟! or 𝜋" ≤ 𝜋!

• Then (∗) translates to:

• A 𝜓" satisfying (∗∗) is called the preemption level of job 𝐽"

• Q: How does 𝜓" look like for EDF?

43

(∗∗) if 𝑟* > 𝑟+ and 𝜋* > 𝜋+, then 𝜓* > 𝜓+ (it’s possible for 𝐽* to preempt 𝐽+)

Stack-based resource policy with EDF

• Priority is inversely proportional to the absolute deadline

• Preemption level is inversely proportional to the relative deadline

• Observe that:

• If A arrives after B and Priority(A) > Priority(B) then
PreemptionLevel(A) > PreemptionLevel(B)

B

A

44

Stack-based resource policy

• The preemption level 𝜓+ of 𝐽+ is any quantity satisfying the statement:
if 𝑟* > 𝑟+ and 𝜋* > 𝜋+, then 𝜓* > 𝜓+

• Q: How does 𝜓+ look like for EDF?

• EDF:
• 𝜋" > 𝜋# iff 𝑟" + 𝐷" < 𝑟# + 𝐷#
• So 𝑟# < 𝑟" implies 𝑟# + 𝐷" < 𝑟# + 𝐷# ⇒ 𝐷" < 𝐷#
• 𝜓" > 𝜓# ⇔ 𝐷" < 𝐷#

• For EDF, this quantity is for the entire task, not only a job!

• The possibility that a task preempts other tasks remains constant throughout all its
invocations

• Task’s preemption level is static; can be computed offline once and for all

• EDF is one such fixed preemption-level system

• In such systems, the potentials of resource contentions do not change with time, just as in fixed-priority
systems, and hence can be analyzed statically 45

Stack-based resource policy

• In fixed-preemption level systems, the set of critical sections that can block 𝑇# are
𝑧+,": 𝜓# > 𝜓+, 𝐶 𝑅" ≥ 𝜓#

• Stack-based resource policy [SRP]

• Preemption level: Any fixed value that satisfies the statement “If A arrives after B and
Priority(A) > Priority(B) then PreemptionLevel(A) > PreemptionLevel(B)”

• Resource ceiling for resource R: Highest preemption level of all tasks that may
access the resource R

• System ceiling: Highest resource ceiling among all currently locked resources

• A task can preempt another task if both:

• it has the highest priority; and

• its preemption level is higher than the system ceiling

46

Stack-based resource policy

• Resource ceiling 𝐶 𝑅! = max 𝜓": 𝑇" uses 𝑅!

• System ceiling 𝐶 𝑡 = max 𝐶 𝑅! : resource 𝑅! is being used at time 𝑡

• Perform preemption test when a task arrives (on the arriving task), and on
highest priority task when 𝐶 𝑡 decreases (a resource is released)

47

A task can preempt another task if both:
• it has the highest priority; and
• its preemption level is higher than the system ceiling

If 𝑇" is the highest priority task at time 𝑡 and 𝜓" > 𝐶 𝑡 then allow 𝑇" to preempt,
otherwise block it

SRP Preemption Test

Priority ceiling vs. stack-based resource policy

Priority Ceiling Protocol

Need yellow but
priority is lower
than red ceiling

Need blue but
priority is lower
than red ceiling Need red but

priority is lower
than red ceiling

Done
48

T1

T2

T3

T4

Priority ceiling vs. stack-based resource policy

Stack-based Resource PolicyCan’t preempt.
Preemption level is not
higher than ceiling.

49

Releases red,
C(t) decreases to 0,
perform preemption test on highest priority task available

T1

T2

T3

T4

Priority ceiling vs. stack-based resource policy

Stack-based Resource Policy

Can’t preempt.
Preemption level is not
higher than ceiling. Notice that SRP is similar to immediate inheritance in PCP.

However, with no static priority levels, it needs a
preemption level.

50

Releases red,
C(t) decreases to 0,
perform preemption test on highest priority task available

T1

T2

T3

T4

Stack-based resource policy

• Q: What does it mean when a task passes the preemption test?

• A: the resources that are currently available are sufficient to satisfy the
maximum requirement of task 𝑇$ and the maximum requirement of
every task that could preempt 𝑇$.

• This means that once 𝑇$ starts executing, it will never be blocked for
resource contention.

51

Stack-based resource policy

Remarks

• SRP avoids deadlocks. Why?

• Resources are only allocated when a task requests them, not when it preempts

• A higher-priority job may preempt and use the resources between these
critical sections

• A task can be blocked by the preemption test even though it does not require
any resource. This is needed to avoid unbounded priority inversion.

• The preemption test has the effect of imposing priority inheritance

• An executing task that holds a resource modifies the system ceiling and
resists preemption as though it inherits the priority of any tasks that might
need that resource

52

Analysis with EDF and SRP

• As simple as other protocols

For task 𝑇"
Maximum blocking due to task with
lower preemption level; in the case of
EDF: with period Pj such that Pk < Pj.

Tasks are sorted such that the task with
shortest period is T1 and so on.

53

What is the “stack” in Stack-based Resource Sharing
Protocol?

Two things:

1. Can be implemented using a stack data structure. How?

2. Allows tasks to share the run-time stack.

Refer to the paper for more details …

54

In-class activity

Highlights

• Schedulability analysis needs to account for blocking due to low priority tasks

• Priority inheritance protocol (PIP) may not prevent deadlocks

• Deadlocks can be prevented with the priority ceiling protocol (PCP)

• To deal with dynamic priority policies (such as EDF), we need a different policy: the
stack-based resource policy (SRP)

• SRP (and the immediate inheritance version of the PCP) have efficient
implementations

• Reduce the number of context switches

• SRP also prevents deadlocks (note the similarities between PCP and SRP)

56

