
GNU ARM Assembler Quick Reference

A summary of useful commands and expressions for the ARM architecture using the GNU assembler is
presented briefly in the concluding portion of this Appendix. Each assembly line has the following format:

 [<label>:] [<instruction or directive>} @ comment

Unlike the ARM assembler, using the GNU assembler does not require you to indent instructions and
directives. Labels are recognized by the following colon instead of their position at the start of a line. An
example follows showing a simple assembly program defining a function ‘add’ that returns the sum of
two input arguments:

.section .text, “x”

.global add @ give the symbol add external linkage

add:
 ADD r0, r0, r1 @ add input arguments
 MOV pc, lr @ return from subroutine

@ end of program

GNU Assembler Directives for ARM

The follow is an alphabetical listing of the more command GNU assembler directives.

GNU Assembler Directive Description
.ascii “<string>” Inserts the string as data into the assembly (like DCB in

armasm).
.asciz “<string>” Like .ascii, but follows the string with a zero byte.
.balign <power_of_2>
{,<fill_value>
{,<max_padding>} }

Aligns the address to <power_of_2> bytes. The assembler
aligns by adding bytes of value <fill_value> or a suitable default.
The alignment will not occur if more than <max_padding> fill
bytes are required (similar to ALIGN in armasm).

.byte <byte1> {,<byte2>} … Inserts a list of byte values as data into the assembly (like DCB
in armasm).

.code <number_of_bits> Sets the instruction width in bits. Use 16 for Thumb and 32 for
ARM assembly (similar to CODE16 and CODE32 in armasm).

.else Use with .if and .endif (similar to ELSE in armasm).

.end Marks the end of the assembly file (usually omitted).

.endif Ends a conditional compilation code block – see .if, .ifdef, .ifndef
(similar to ENDIF in armasm).

.endm Ends a macro definition – see .macro (similar to MEND in
armasm).

.endr Ends a repeat loop – see .rept and .irp (similar to WEND in
armasm).

.equ <symbol name>, <value> This directive sets the value of a symbol (similar to EQU in
armasm)

.err Causes assembly to halt with an error.

.exitm Exit a macro partway through – see .macro (similar to MEXIT in
armasm)

.global <symbol> This directive gives the symbol external linkage (similar to
EXPORT in armasm).

.hword <short1> {,<short2>}
…

Inserts a list of 16-bit values as data into the assembly (similar to
DCW in armasm).

GNU Assembler Directive Description
.if <logical_expression> Makes a block of code conditional. End the block using .endif

(similar to IF in armasm). See also .else.
.ifdef <symbol> Include a block of code if <symbol> is defined. End the block

with .endif.
.ifndef <symbol> Include a block of code if <symbol> is not defined. End the block

with .endif.
.include “<filename>” Includes the indicated source file (similar to INCLUDE in

armasm or #include in C).
.irp <param> {,<val_1>}
{,<val_2>} …

Repeats a block of code, once for each value in the value list.
Mark the end of the block using a .endr directive. In the
repeated code block, use \<param> to substitute the associated
value in the value list.

.macro <name> {<arg_1}
{,<arg_2>} … {,<arg_N>}

Defines an assembler macro called <name> with N parameters.
The macro definition must end with .endm. To escape from the
macro at an earlier point, use .exitm. These directives are
similar to MACRO, MEND, and MEXIT in armasm. You must
precede the dummy macro parameters by \. For example:

.macro SHIFTLEFT a, b
 .if \b < 0
 MOV \a, \a, ASR #-\b
 .exitm
 .endif
 MOV \a, \a, LSL #\b
.endm

.rept <number_of_times> Repeats a block of code the given number of times. End with
.endr.

<register_name> .req
<register_name>

This directive names a register. It is similar to the RN directive
in armasm except that you must supply a name rather than a
number on the right (e.g., acc .req r0).

.section <section_name>
{,”<flags>”}

Starts a new code or data section. Sections in GNU are called
.text, a code section, .data, an initialized data section, and
.bss, an uninitialized data section. These sections have default
flags, and the linker understands the default names (similar
directive to the armasm directive AREA). The following are
allowable .section flags for ELF format files:

<Flag> Meaning
 a allowable section
 w writable section
 x executable section

.set <variable_name>,
<variable_value>

This directive sets the value of a variable. It is similar to SETA
in armasm.

.space <number_of_bytes>
{,<fill_byte>}

Reserves the given number of bytes. The bytes are filled with
zero or <fill_byte> if specified (similar to SPACE in armasm).

.word <word1> {,<word2>} … Inserts a list of 32-bit word values as data into the assembly
(similar to DCD in armasm).

Assembler Special Characters / Syntax
 Inline comment char: ‘@’
 Line comment char: ‘#’
 Statement separator: ‘;’
 Immediate operand prefix: ‘#’ or ‘$’

Register Names
 General registers: %r0 - %r15 ($0 = const 0)
 FP registers: %f0 - %f7
 Non-saved (temp) regs: %r0 - %r3, %r12
 Saved registers: %r4 - %r10
 Stack ptr register: %sp
 Frame ptr register: %fp
 Link (retn) register: %lr
 Program counter: %ip
 Status register: $psw
 Status register flags: xPSR
 (x = C current) xPSR_all
 (x = S saved) xPSR_f
 xPSR_x
 xPSR_ctl
 xPSR_fs
 xPSR_fx
 xPSR_fc
 xPSR_cs
 xPSR_cf
 xPSR_cx
 .. and so on

Arm Procedure Call Standard (APCS) Conventions
 Argument registers: %a0 - %a4 (aliased to %r0 - %r4)
 Returned value regs: %v1 - %v6 (aliased to %r4 - %r9)

Addressing Modes
‘rn’ in the following refers to any of the numbered registers, but not the control registers.
 addr Absolute addressing mode
 %rn Register direct
 [%rn] Register indirect or indexed
 [%rn,#n] Register based with offset
 #imm Immediate data

Machine Dependent Directives
 .arm Assemble using arm mode
 .thumb Assemble using thumb mode
 .code16 Assemble using thumb mode
 .code32 Assemble using arm mode
 .force_thumb Force thumb mode (even if not supported)
 .thumb_func Mark entry point as thumb coded (force bx entry)
 .ltorg Start a new literal pool

Opcodes
For detailed information on the machine instruction set, see this manual:

ARM Architecture Reference Manual, Addison-Wesley ISBN 0-201-73719-1

Here is a recommended book to get a lot of system developer information on the ARM architecture.

ARM System Developer’s Guide, Morgan Kaufmann Publishers ISBN 1-55860-874-5 (alk.paper), authors:
Andrew N. Sloss, Dominic Symes, Chris Wright, 2004

